Welcome to CIREQ’s new website !

Efficient Estimation of Regression Models with User-Specified Parametric Model for Heteroskedasticity

Lunch-Seminar CIREQ-McGill 2022-2023
joint with the Department of Economics, McGill University

Leacock 429 (McGill University, 855 Sherbrooke West)


RESUMÉ : Several modern textbooks report that, thanks to the availability of heteroskedasticity robust standard errors, one observes the near-death of Weighted Least Squares (WLS) in cross-sectional applied work. We argue in this paper that it is actually possible to estimate regression parameters at least as precisely as OLS and WLS, even when using a misspecified parametric model for conditional heteroskedasticity. Our analysis is valid for a general regression framework (including Instrumental Variables and Nonlinear Regression) as long as the regression is defined by a conditional expectation condition. The key is to acknowledge, as first pointed out by Cragg (1992) that, when the user-specific heteroskedasticity model is misspecified, WLS has to be modified depending on a choice of some univariate target for estimation. Moreover, targeted WLS can be improved by properly combining moment equations for OLS and WLS respectively. Efficient GMM must be regularized to take into account the possible multicolinearity of estimating equations when errors terms are actually nearly homoscedastic.

Upcoming Events

There are no upcoming events at this time.