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Abstract

We consider classical and Bayesian estimation procedures implemented by means of a set

of conditional moment conditions that depend on latent variables. The latent variables

evolve according to a Markovian transition density. Two main classes of applications are:

1) GMM estimation with time-varying parameters; and 2) estimation of nonlinear Dynamic

Stochastic General Equilibrium (DSGE) models. The key idea is to base inference on an ap-

proximate likelihood that depends on conditional moment conditions. Bayesian estimation

using this approach has received previous attention. The Bayesian results, which exploit

some differences between Bayesian and frequentist inference, are summarized. Two methods

for extending the Bayesian results to frequentist inference are discussed: 1) a particle filter

approach. and, 2) a nonparametric sieve approach. At the present state of development, the

former holds the most promise.

Keywords and Phrases: Generalized Method of Moments, Limited Information Maximum

Likelihood, Latent Variables, Macro Models

JEL Classification: C32, C36, E27
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1 Introduction

Limited information state space models – which we define as a set of moment conditions that

depend on latent variables evolving according to a Markovian transition density – arise in

several applications in economics. Examples of latent variables are time-varying parameters

and structural shocks, which are often used in both partial and general equilibrium models to

capture time variation and exogenous sources of persistence. The presence of latent variables

poses some econometric challenges, which are usually addressed using a set of procedures

that go under the name of state-space methods.

With state space methods, either Bayesian or frequentist, the standard method is to

obtain the conditional density p(X |Λ, θ), where X = (X1, ..., XT ) and Λ = (Λ1, ...,ΛT )

denote the histories of observable and latent variables, respectively, and θ is the param-

eter of interest. Then one integrates to obtain the likelihood for observables p(X|θ) =
�
p(X|Λ, θ)p(Λ|θ) dΛ using either analytic integration, numerical integration, or (particle)

filtering (Fernandez-Villaverde and Rubio-Ramirez, 2006). This assumes knowledge of both

densities inside the integral. If convenient analytic expressions are not available, these meth-

ods, as commonly implemented, involve numerical and analytic approximations that can be

so inaccurate that econometric inference is misleading.

Without a likelihood, but for models that can be simulated, Bayesian methods can be

implemented (Gallant and McCulloch, 2009), as can methods as efficient as maximum like-

lihood (Gallant and Tauchen, 1996), as well as GMM methods (Duffy and Singleton, 1993).

However, the necessity of solving the model can introduce the same numerical compromises,

such as log-linearization, that have invited criticism of likelihood based methods. Calibration

methods suffer from this criticism for the same reason.

From the Bayesian perspective these criticisms are addressed by Gallant and Hong (2007).

They form a limited information likelihood from a (continuously updated) GMM criterion.

The method does not require an analytic expression for the density p(Λ|θ) but does require

a prior opinion as to what it might be. In Gallant and Hong this opinion is expressed via

a sieve representation of p(Λ|θ) and a prior on the coefficients of the sieve. Gallant and

Hong heavily exploit some differences between Bayesian and frequentist inference with the
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consequence that their approach does not conveniently admit of an asymptotic analysis that

could extend it from Bayesian to frequentist inference.

The contribution here is to modify the approach of Gallant and Hong so that it does

admit of an asymptotic analysis. We review the Gallant and Hong approach in Section 3. In

Section 4, we use the likelihood derived in Section 3 and directly eliminate the latent variables

from the moment conditions by integration using a particle filter and then proceed along more

traditional lines using the Chernozhukov and Hong (2003) method to optimize the likelihood.

In Section 5, using an alternative extension of Gallant and Hong, we nonparametrically

estimate the realized history of the latent process, which has the side effect of eliminating

the need for a prior opinion regarding the probability law of the latent process. Inference is

based on a GMM criterion, which is also nonparametric in the sense that no distributional

assumptions are required beyond existence of moments.

2 Examples

2.1 A Stochastic Volatility Model

A simple example of the foregoing is a stochastic volatility model:

Xt = ρXt−1 + exp(Λt)ut

Λt = φΛt−1 + σet

et ∼ N(0, 1)

ut ∼ N(0, 1)

The true values of the parameters are

θ0 = (ρ0, φ0, σ0) = (0.9, 0.9, 0.5)
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The moment conditions used with this model are:

h1 = (Xt − ρXt−1)
2 − [exp(Λt)]

2 (1)

h2 = |Xt − ρXt−1||Xt−1 − ρXt−2| −
(

2

π

)2

exp(Λt) exp(Λt−1) (2)

...

hL+1 = |Xt − ρXt−1||Xt−L − ρXt−L−1| −
(

2

π

)2

exp(Λt) exp(Λt−L) (3)

hL+2 = Xt−1(Xt − ρXt−1) (4)

hL+3 = Λt−1(Λt − φΛt−1) (5)

hL+4 = (Λt − φΛt−1)
2 − σ2 (6)

2.2 A Dynamic Stochastic General Equilibrium Model

This example is taken from Del Negro and Schorfheide (2008). We need to have a model

with an exact analytical solution to generate reliable data with which to test our proposed

methods. The working paper version of the article has some simplified versions of the full

model in the article that have an analytic expression for the solution. The example is one of

the simplified versions. A solid argument in the working paper that the model is identified

is what distinguishes the version we use from the others.

The full model is a medium-scale New Keynesian model with price and wage rigidities,

capital accumulation, investment adjustment costs, variable capital utilization, and habit

formation. The simplified model discussed here is obtained by removing capital, fixed costs,

habit formation, the central bank, and making wages and prices flexible. With these choices,

the model has three shocks: the log difference of total factor productivity zt, a preference

shock that affects intertemporal substitution between consumption and leisure φt, and the

price elasticity of intermediate goods λt, called a mark-up shock in the article. In the full

model the endogenous variables are output, consumption, investment, capital, and the real

wage, which are detrended by exp(zt) and expressed as log deviations from the steady-state

solution of the model, and inflation. Of these, the ones of interest in the simplified model

are the log deviations of wages and output, wt and yt, respectively, and inflation πt. The

time increment is one quarter.
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The exogenous shocks are distributed as

zt = ρzzt−1 + σzǫz,t

φt = ρφφt−1 + σφǫφ,t

λt = ρλλt−1 + σλǫλ,t

The first order conditions are

0 = yt +
1

β
πt − Et(yt+1 + πt+1 + zt+1)

0 = wt + λt

0 = wt − (1 + ν)yt − φt

where ν is the inverse Frisch labor supply elasticity and β is the discount rate.

The solution for the endogenous variables is

wt = −λt

yt = − 1

1 + ν
λt −

1

1 + ν
φt

πt = β
1− ρλ

(1 + ν)(1− βρλ)
λt + β

1− ρφ
(1 + ν)(1− βρφ)

φt + β
ρz

(1− βρz)
zt

The true values of the parameters are

θ = (ρz, ρφ, ρλ, σz, σφ, σλ, ν, β) = (0.15, 0.68, 0.56, 0.71, 2.93, 0.11, 0.96, 0.996)

which are the parameter estimates for model PS of Del Negro and Schorfheide (2008) as

supplied by Frank Schorfheide in an email communication.

We take wt, yt, and πt as measured and zt and φt as latent so that in our notation

Xt = (wt, yt, πt)

Λt = (zt, φt).
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The moment conditions that we shall use are

h1 = (zt+1 − ρzzt)2 − σ2
z (7)

h2 = zt(zt+1 − ρzzt) (8)

h3 = (φt+1 − ρφφt)2 − σ2
φ (9)

h4 = φt(φt+1 − ρφφt) (10)

h5 = (wt+1 − ρλwt)2 − σ2
λ (11)

h6 = wt(wt+1 − ρλwt) (12)

h7 = wt+1 − (1 + ν)yt+1 − φt+1 (13)

h8 = yt+1 + πt+1 + zt+1 − yt −
1

β
πt (14)

Some additional moment conditions one might consider are

h9 = wth8 (15)

h10 = yth8 (16)

h11 = πth8 (17)

h12 = zth8 (18)

h13 = φth8 (19)

3 Bayesian Methods

Gallant and Hong (2007) introduced a method for Bayesian inference for dynamic models

with possibly endogenous, unobserved variables building on ideas due to Fisher (1930). They

used the method to extract the monthly and annual pricing kernels from a panel of equity

and fixed income securities using a GMM criterion function derived from Euler conditions.

We will introduce their ideas with a simple example, follow that with the general case, and

then illustrative with their application.

3.1 A Simple Example

(Figure 1 about here)
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Consider a random sample X1, . . . , Xn from a normal distribution whose mean Λ is also

normally distributed. That is, there is one draw to get Λ and then n draws from n(X |Λ, σ2).

The statistic

Z =
√
n

(
X̄ − Λ√

s2

)

will have the t-distribution, where X̄ = 1
n

∑n
i=1Xi and s2 = 1

n−1

∑n
i=1(Xi − X̄)2. For large

enough n the t-distribution cannot be distinguished from the normal, which, for convenience,

is the distribution that we shall use for Z. Even without assuming that the Xi are normal

an assumption that Z is normal is often reasonable. Thus, X̄ and Λ have joint density

p(X̄,Λ) =
1√
2π

e−
n
2

(X̄−Λ)2

s2 .

The mathematical justification for this assertion is in Gallant and Hong. Joint probability

on (Ȳ ,Λ) can only be assigned to (the smallest σ-algebra containing all) sets bounded by 45

degree lines. An example is the set labeled A(Ȳ ,Λ) in Figure 1. The conditional probability

for a set such as that labeled C(Ȳ |Λ) in Figure 1 is computed as

P (C |Λ) =

�

C
p(X̄,Λ) dX̄

�∞

−∞
p(X̄,Λ) dX̄

.

Conditional probability must be computed in this way to achieve coherency. In most ap-

plications, as in this one, the integral that appears in the denominator of P (C |Λ) will be

identically equal to one for all Λ. Therefore, because the denominator is identically one,

p(X̄,Λ) is also a conditional density.

The conditional probability P (C |Λ) also attaches itself to sets of the form Cn =

{(X1, . . . , Xn) : X̄ ∈ C} by the change of measure formula; details are in Gallant and Hong.

Information is lost relative to the full likelihood p(X1, . . . , Xn |Λ), were it available, because

only (the σ-algebra containing all) sets of the form Cn in R
n can be assigned conditional

probability by the density p(X̄,Λ). These sets Cn will be unbounded and have the restric-

tion, among others, that if (X1, X2, . . . , Xn) is in Cn then so will (Xσ(1), Xσ(2), . . . , Xσ(n)) be

in Cn for any permutation σ(·) of the integers 1 through n. In particular, bounded rectangles

in R
n will not be in this σ-algebra and therefore cannot be assigned conditional probability

whereas they can be assigned probability by the full likelihood.
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The essential point of this subsection is that p(X̄,Λ) can be regarded as a conditional

density on R
n and is therefore a likelihood.

3.2 Bayesian Estimation

We now consider the general case. As above, letX = (X1, ..., XT ) and Λ = (Λ1, ...,ΛT ) denote

histories of observable and latent variables, respectively, and θ be the parameter of interest.

Let h : R
dx × R

dλ × R
dβ → R

M be a set of M moment conditions involving dx observable

variables Xt and dλ latent variables Λt. A limited information state space model is defined

as

E [h(Xt+1,Λt+1, β) | It] = 0 (20)

Λt+1 ∼ P (Λt+1 |Λt, γ) (21)

where It = {. . . , X1,Λ1, X2,Λ2, . . . , Xt,Λt} is the information set at time t. Let θ = (β, γ)

with any redundancies eliminated and let θ0 denote the true value of θ. The system in (20)

and (21) implies a set of M unconditional moment conditions

E[g(Xt+1,Λt+1, θ0)] = 0. (22)

As above, the likelihood p(X,Λ, θ) is based on a transformation of the GMM objective

function:

p(X,Λ, θ) = (2π)−M/2 exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1 gT (X,Λ, θ)

}
. (23)

where

gT (X,Λ, θ) =
1√
T

T∑

t=1

g(Xt,Λt, θ),

Σ(X,Λ, θ) =
1

T

T∑

t=1

[g̃(Xt,Λt, θ)] [g̃(Xt,Λt, θ)]
′ , (24)

g̃(Xt,Λt, θ) = g(Xt,Λt, θ)−
1√
T
gT (X,Λ, θ).

Depending on the nature of the dynamics and moments, a HAC estimator (Gallant, 1987,

p. 445) of Σ(X,Λ, θ) may have to be substituted for (24).
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The likelihood p(X,Λ, θ) is used in the usual way for Bayesian inference. That is, one

specifies a prior p(Λ, θ) and draws from the posterior using Markov Chain Monte Carlo

(MCMC) (Gamerman and Lopes, 2006). As the dimension of Λ can be large, this can be

computationally intensive. Perhaps the best known example of this computational approach

in the econometrics literature is Jacquier, Polson, and Rossi (1994). Because Bayesian

inference is subjective, one does not have to regard p(X,Λ, θ) as an approximation to the

likelihood justified by asymptotics, although most would.

3.3 Illustrative Example

Any asset pricing kernel {Λt} will satisfy these Euler equations

1 = Et (Λt+1Xs,t+1) , (25)

where Xs,t is the gross return on asset s at time t. Gallant and Hong used 551 monthly

returns on the Fama and French (1993) portfolios and U.S. Treasury debt of ten year, one

year, and thirty day maturities as data to implement the moment conditions and these data

lagged as well as aggregate stock returns, consumption growth, and labor income growth

as instruments. The Euler equations interacted with the instruments comprise the moment

conditions gT (X,Λ, θ) above. There are enough moment conditions to overidentify {Λt},
although overidentification is not required as seen from Jacquier, Polson, and Rossi (1994).

The variance matrix Σ(X,Λ, θ) has a factor structure with known eigenvectors, which dra-

matically reduces the dimensionality of the computations; θ contains the eigenvalues of

Σ(X,Λ, θ). These moment conditions define the likelihood p(X,Λ, θ) given by (23). The

prior used by Gallant and Hong has the form

[ n∏

t=1

f(Λt+1|Λt, . . . ,Λ1, η)
]
f(Λ1|η) p(η)

where f(Λt+1|Λt, . . . ,Λ1, η) is the sieve for the law of motion of Λ of Gallant and Nychka

(1987) and p(η) mildly tilts the law of motion toward the Bansal and Yaron (2004) calibration

of a long-run risks economy. Draws from the posterior are obtained by MCMC using the

code at http://public.econ.duke.edu/webfiles/arg/emm. The mean and standard deviation

of the posterior for Λ are shown in Figure 2.
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(Figure 2 about here)

4 Particle Filter Methods

Recall from Subsection 3.2 that we have two jointly distributed histories under consideration,

the observed

X = (X1, ..., XT )

and the unobserved

Λ = (Λ1, ...,ΛT ).

We shall denote partial histories by

X1:t = (X1, ..., Xt)

and

Λ1:t = (Λ1, ...,Λt),

respectively. The joint distribution depends on an unknown parameter θ. A particle filter is

a computationally efficient method for drawing from the conditional distribution of Λ given

X with θ specified. Therefore, given a set of moment conditions

gT (X,Λ, θ)

that depend on the joint history, the draws can be used to compute

gT (X, θ) = E [gT (X,Λ, θ) |X].

By the law of iterated expectations, EgT (X, θ) = 0. Therefore, gT (X, θ) can be used for

GMM estimation in the usual way. In this section we shall describe the computational

procedure and apply it to the examples in Section 2. The theoretical justification follows in

Subsection 4.4.

The setup is as in Subsection 3.2 with one important difference. The density (23) is the

density of

Z = [Σ(X,Λ, θ)]−1/2 gT (X,Λ, θ)
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as dictated by the theory developed in Gallant and Hong (2007). In frequentist inference one

has some flexibility as to what density to use and one might consider density of gT (X,Λ, θ),

which is

p̂(X,Λ, θ) = [2π det Σ(X,Λ, θ)]−M/2 exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1 gT (X,Λ, θ)

}
. (26)

The reason is that (23) is a continuously updated GMM estimator, which has well known

tail problems in frequentist inference. The determinant term in (26) may alleviate the tail

problem. We consider this issue in the numerical experiments that we conduct. When

computing the above quantities from partial histories we shall substitute the subscript t for

T .

For given θ, the particle filter algorithm is as follows.

1. Initialization.

(a) Set T0 to the minimum sample size required to compute gt(X1:t,Λ1:t, θ).

(b) For i = 1, . . . , N sample (Λ
(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

) from p(Λt|Λt−1, γ).

(c) Set t to T0 + 1.

(d) Set Λ
(i)
1:t−1 = (Λ

(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

)

2. Importance sampling step.

(a) For i = 1, . . . , N sample Λ̃
(i)
t from p(Λt|Λ(i)

t−1) and set Λ̃
(i)
1:t = (Λ

(i)
0:t−1, Λ̃

(i)
t ) .

(b) For i = 1, . . . , N compute weights w̃
(i)
t = p̂(X1:t, Λ̃

(i)
1:t, θ).

(c) Normalize the weights, i.e., w̃
(i)
t ← w̃

(i)
t /

∑N
t=1 w̃

(i)
t .

3. Selection step.

(a) For i = 1, . . . , N sample with replacement from the set {Λ̃(i)
1:t} according to the

normalized weights w̃
(i)
t to obtain a new set of particles {Λ(i)

1:t} that have equal

weight.

(b) If t < T, increment t and go to Step 2; else go to Step 4.

4. Finalize.
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(a) Compute

ḡT (θ) =
1

N

N∑

i=1

gT (X,Λ
(i)
1:T , θ)

(b) Compute

Σ̄T (θ) =
1

N

N∑

i=1

ΣT (X,Λ
(i)
1:T , θ)

(c) Set

p̄T (θ) = (2π det Σ̄T (θ))−M/2 exp

{
−1

2
ḡ′T (θ)

[
Σ̄T (θ)

]−1
ḡT (θ)

}

The density p̄T (θ) can be treated as a likelihood and standard maximum likelihood for-

mulae can be used for statistical inference. However, there is the complication that even

if the particle filter commences with the same seed at Step 1 for each θ, p̄T (θ) will not be

differentiable with respect to θ due to Step 3. This is a well known problem and there are

various ways to deal with it (Pitt, 2002) and (Flury and Shephard, 2010). The first involves

smoothing the selection method; it is difficult to implement when there is more than one

latent variable. The second uses a variable seed instead of a fixed seed to start the particle

filter algorithm every time θ is changed by an MCMC method with N increased as necessary

to control the rejection rate of the chain. An example of its use appears in Table 1. Neither

method gets around the main problem with particle filter methods which is that they are

computationally intensive. The Flury and Shephard method can make the problem worse

or better; it’s a matter of trial and error.

We propose an EM method (Dempster, Laird, Rubin, 1977) that dramatically reduces

computational cost and that we believe is new to this paper. Our solution is to use the particle

filter algorithm as the expectation part of an EM method. We use the Chernozhukov-Hong

(2003) method as implemented at http://public.econ.duke.edu/webfiles/arg/emm but only

at every 50th MCMC draw do we run the particle filter algorithm. At all the others we reuse

the particles from the previous computation. Runtimes decrease by about 1/50 because the

particle filter is nearly the entire computational cost. (The number 50 is larger than 5 times

the number of parameters for our examples so that all can be expected to move between E

steps under a move-one-at-time random walk proposal.) Also, there is less need for a large

number of particles because there is no essential need for smoothness with our proposed
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approach. We refer to it as the EM PF GMM method hereafter.

With this EM approach it is necessary that the moment equations would be sufficient to

identify all the parameters of the model were both X and Λ observed because this is essen-

tially the situation during the M step of the EM algorithm. For instance, for the stochastic

volatility model of Subsection 4.2 the moments (5) and (6) are necessary whereas they would

not be if one worked by analogy with conventional particle filter methods with an analytic

measurement density available. A conventional particle filter with analytic measurement

density is effectively only using moment conditions (1) and (4). Moment conditions (2)

through (3) are overidentifying conditions.

Strictly speaking, what we propose is not an EM algorithm because neither the E step nor

the M step is guaranteed to increase the objective function. Present experience suggests that

this doesn’t matter because an MCMC chain can tolerate some choppiness. What MCMC

cannot tolerate is valleys that it cannot cross, which is what seems to happen when the E

step is eliminated (by running the particle filter at every draw of the MCMC chain).

It is helpful to regularize inversion of the weighting matrix (48). If the condition number of

the weighting matrix (ratio of smallest singular value to the largest) falls below a preset value

η (e.g. η = 10−13) an amount δ is added to the diagonal elements of the weighting matrix

just sufficient to bring the condition number to η prior to inversion of the weighting matrix.

If the inference strategy were Bayesian, the idea of Andrieu, Douced, and Holenstein (2010)

of using the particle filter as a proposal within an MCMC chain, which requires actually

computing the transition density induced by the particle filter, would be of interest but it

does not seem to be compatible with the view of this section that Λ is a variable to be

eliminated by integration rather than a parameter to be estimated.

4.1 Caveat

The computations in Subsections 4.2 and 4.3 that follow are suggestive of eventual success

but are defective in that they contain undissipated transients and we have not yet gotten

the chains to mix adequately. In some instances the chains have drifted to unreasonable

parameter values.
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4.2 Stochastic Volatility Example

Estimates of θ for the stochastic volatility example of Subsection 4.2 are shown in Table 1

for three methods: EM PF GMM with a Jacobian term, without a Jacobian term, and using

the Flury and Shephard (2010) estimator.

Applying the particle filter at the true value of θ and N = 5000, we obtain the estimate

of Λ shown as a time series plot in Figure 3 and as a scatter plot in Figure 4 for the case

when a Jacobian term is included and as Figures 5 and 6 when it is not. The plots for the

Flury and Shephard estimator are Figures 7 and 8. In the particle filter vernacular, the EM

PF GMM estimator is computed from a smooth whereas the Flury and Shephard estimator

is computed from a filter; accordingly, the plots shown for the EM PF GMM estimator are

smooths whereas the plots shown of the Flury-Shephard estimator are filters.

The Flury and Shephard estimator is not strictly comparable because it is a Bayesian

estimator and requires a likelihood, which, in turn, requires the use of numerical methods

whose quality can be dubious in DSGE models, as discussed in Section 1. In the stochastic

volatility example an analytic likelihood is available. We find that the essential idea of

Flury and Shephard of letting the seed be random does not work for our GMM objective

function because the number of particles has to be so large to control the rejection rate that

computational cost becomes a serious issue. Moreover, the proof strategy that justifies it

does not apply to our estimator.

(Table 1 about here)

(Figure 3 about here)

(Figure 4 about here)

(Figure 5 about here)

(Figure 6 about here)

(Figure 7 about here)

(Figure 8 about here)
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4.3 Dynamic Stochastic General Equilibrium Example

Applying EM PF GMM method both with and without a Jacobian term to the DSGE model

of Subsection 2.2, we obtain the estimates of θ shown in Table 2.

Applying the particle filter at the true of θ and N = 10000, we obtain the estimate of Λ

shown as a time series plots in Figures 9 and 11 and as a scatter plots in Figures 10 and 12.

(Table 2 about here)

(Figure 9 about here)

(Figure 10 about here)

(Figure 11 about here)

(Figure 12 about here)

4.4 Theoretical Justification

For simplicity, we shall drop the Jacobian term and use the likelihood discussed in Subsec-

tions 3.1 and 3.2. The case with the Jacobian term is analogous.

Define

Zt(X1:t,Λ1:t, θ) = [Σ(X1:t,Λ1:t, θ)]
−1/2gt(X1:t,Λ1:t, θ)

and

ZT (X,Λ, θ) = [Σ(X,Λ, θ)]−1/2gT (X,Λ, θ).

Let θo denote the true value of theta and let Λo
1:t and Xo

1:t denote the realized values of

the data and latent variables. Neither θo nor Λo
1:t are observed; Xo

1:t is observed. Let zot =

Zt(X
o
1:t,Λ

o
1:t, θ

o).

For each pair (Λ1:t, θ) that the structural model permits, let X(Λ1:t,θ) be the set of per-

mitted X1:t. Let B(Λ1:t,θ) = {z : z = Zt(X1:t,Λ1:t, θ), X1:t ∈ X(Λ1:t,θ)}. We assume, as

in the example of Subsection 3.1, that
�

B(Λ1:t,θ)
n(z|0, I) dz = 1. Under this assumption,

p(X1:t,Λ1:t, θ) can be regarded as a conditional density for X1:t given Λ1:t that can assign

conditional probability to sets of the form

C1:t = {X1:t : Zt(X1:t,Λ1:t, θ) ∈ B}
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where B ⊂ R
M is Borel. The probability assigned to C1:t is P (C1:t|Λ1:t, θ) =

�

B
n(z|0, I) dz.

In the case B is a singleton, we use the notation Cz
1:t. Let C1:t denote the smallest σ-algebra

containing the C1:t.

The functions f(·) for which the integral
�
f(X1:t)P (dX1:t |Λ1:t, θ) can be computed must

be measurable with respect to C1:t. Such f(·) will be constant on Cz
1:t.

Given (Λ1:t, θ), for each z choose a point X∗
1:t ∈ X(Λ1:t,θ) for which

Zt(X
∗
1:t,Λ1:t, θ) = z

and set

X1:t(z,Λ1:t, θ) = X∗
1:t.

Conversely, any realization X1:t that is possible under the pair (Λ1:t, θ) must lie in some Cz
1:t

thus giving a map X1:t → X∗
1:t → zt in the opposite direction. Note that if X∗

1:t → z∗t then

z∗t → X∗
1:t; therefore, for convenience, we will always choose Xo

1:t as the X∗
1:t for its image so

that Xo
1:t → zot → Xo

1:t.

The following three points are subtle but important: (1) With Λ1:t and θ held fixed, an

f(·) measurable with respect to C1:t can be regarded either as a function of zt or as a function

of X1:t. (2) A function g(·) of the form

g(z1:t) = f [X1:1(z1,Λ1:t, θ), X1:2(z2,Λ1:t, θ), . . . , X1:t(zt,Λ1:t, θ)] (27)

can be evaluated at (zo1:t,Λ1:t, θ) using

g(zo1:t) = f [Xo
1:1, X

o
1:2, . . . , X

o
1:t].

(3) The function p̄T (θ) returned at the end of Step 4 of the particle filter has the form of

Equation 27.

From the point of view of the particle filter we have a transition density p(Λt |Λt−1, θ)

and a measurement density

p(zt |Λ1:t, θ) = n {[Zt[X1:t(zt,Λ1:t, θ),Λ1:t, θ] | 0, I} (28)

Note particularly that with θ and Λ1:t held fixed, the measurement density depends only on

zt ⊂ R
M , Λ1:t, and θ; it does not depend on X1:t. The particle filter produces draws Λ

(i)
1:T

from the density p(Λ1:T | z1:T , θ).
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What we want are draws from the actual conditional density of Λ = Λ1:T given Xo
1:T that

we denote by fT (Λ | z1:T , θ). Let ψT (·) denote the acutal distribution of ZT (Xo
1:T ,Λ, θ) and

ψ(·) its density function. We assume that ψT (·) converges in distribution to the standard

normal distribution φ(·), with density φ(·), for large T . Let

u
(i)
T = φ(z

(i)
T ) p(Λ | θ) (29)

UT =

�

φ(ZT (Xo
1:T ,Λ, θ)) p(Λ | θ) dΛ (30)

v
(i)
T = ψT (z

(i)
T ) p(Λ | θ) (31)

VT =

�

ψT (ZT (Xo
1:T ,Λ, θ)) p(Λ | θ) dΛ (32)

where

p(Λ|θ) = p(Λ
(i)
1 | θ)

T∏

s=2

p(Λ(i)
s |Λ

(i)
s−1, θ).

Using (29) through (32) to construct importance sampling weights, we have

1

N

N∑

i=1

v
(i)
T

u
(i)
T

UT
VT

gT (Xoe :1:T ,Λ
(i)
1:T , θ) =

UT
VT

1

N

N∑

i=1

ψT (z
(i)
T )

φ(z
(i)
T )

gT (Xo
1:T ,Λ

(i)
1:T , θ) (33)

is an approximation to
�

gT (Xo
1:T ,Λ, θ) fT (Λ | z1:T , θ) dΛ (34)

The approximation error decreases as N →∞.

We shall first show that
UT
VT

1

N

N∑

i=1

gT (Xo
1:T ,Λ

(i)
1:T , θ) (35)

also approximates (34) for large N and T .

Choose the cube (a0, b0] large enough that

UT
VT

�

I{ZT (Xo
1:T ,Λ, θ) ∈ (a0, b0]} gT (Xo

1:T ,Λ, θ) fT (Λ | z1:T , θ) dΛ (36)

approximates (34) to within ǫ/4. Let η = min{φ(z) | z ∈ (a0, b0]}. The assumption of

convergence in distribution implies that the convergence of ΨT ((a, b]) to Φ((a, b]) is uniform

over all cubes of the form (a, b] (Billingsly and Topsoe, 1967). Choose T large enough that

|ΨT ((a, b])− Φ((a, b])| < ǫη/4. Choose N large enough that

UT
VT

1

N

N∑

i=1

I{ZT (Xo
1:T ,Λ, θ) ∈ (a0, b0]}

ψT (z
(i)
T )

φ(z
(i)
T )

gT (Xo
1:T ,Λ

(i)
1:T , θ) (37)
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approximates (36) to within ǫ/4. Choose cubes of the form (ai, bi] of equal edge length h

small enough that ΨT ((ai,bi])/h
M

Φ((ai,bi])/hM approximates
ψT (z

(i)
T

)

φ(z
(i)
T

)
to within ǫ/4. We have shown that (35)

approximates (34) to within ǫ.

We shall now show that UT

VT
tends to one.

Choose J disjoint rectangles Ij = (cj, dj], where elements of cj may be −∞ and elements

of dj may be ∞, whose union is R
M and choose points ej ∈ Ij such that

|
J∑

j=1

ψT (ej)IIj(z)− ψT (ej)| < ǫ

|
J∑

j=1

φ(ej)IIj(z)− φT (ej)| < ǫ.

Note that 1 =
∑J

j=1

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ. Then for any T,
∑J

j=1 ψT (ej)
�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ− ǫ∑J
j=1 φ(ej)

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + ǫ

<
UT
VT

<

∑J
j=1 ψT (ej)

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + ǫ
∑J

j=1 φ(ej)
�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ− ǫ
Choose cubes of the form (aj, bj] of equal edge length h small enough that ΨT ((aj, bj])/h

M

approximates ψT (ej) to within ǫ and Φ((aj, bj])/h
M approximates φ(ej) to within ǫ, whence

∑J
j=1 ΨT ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ− 2ǫhM

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + 2ǫhM

<
UT
VT

<

∑J
j=1 ΨT ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + 2ǫhM

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ− 2ǫhM

Choose T large enough that |ΨT ((a, b])− Φ((a, b])| < ǫ, whence
∑J

j=1 Φ((aj, bj])
�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ− ǫ− 2ǫhM

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + ǫ+ 2ǫhM

<
UT
VT

<

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + ǫ+ 2ǫhM

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ− ǫ− 2ǫhM
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which proves that UT

VT
tends to one.

Regularity conditions sufficient for particles to be draws Λ
(i)
1:T from the density p(Λ1:T | z1:T , θ)

are in Andrieu, Douced, and Holensteing (2010) and the references therein. They are mild,

requiring that the weights at Step 2a be bounded and that multinomial resampling be used,

which is the scheme used at Step 3a. We now have pointwise convergence in θ which is

adequate for our purposes. With some more work that we have yet to do, consistency and

asymptotic normality follow from Gallant (1987, Chapter 7).

5 Nonparametric Methods

In this section we nonparametrically estimate the realized history of the latent process,

which has the side effect of eliminating Gallant and Hong’s (2007) need for a prior opinion

regarding the probability law of the latent process. As inference is based on a GMM criterion,

the approach is completely nonparametric in the sense that no distributional assumptions

are required beyond existence of moments.

To motivate our approach, consider the standard paradigm regarding latent variables:

One has an abstract probability space from which Nature draws that leads via a diffusion to

a trajectory for the latent variables that is continuous but nondifferentiable. The economic

agent samples this trajectory at discrete intervals, say monthly. The probability law of the

sampled sequence can usually be given a convenient discrete time representation such as an

autoregression. We show that under standard assumptions on the probability law of the

latent process there corresponds to the sampled sequence a function that has an invertible

Fourier transform. The Fourier transform of this function function is the object that we

shall estimate nonparametrically. An estimate of the transform can be inverted to obtain an

estimate of the history of the latent process that governed the agent’s decisions.

5.1 The Fourier Transform of the Latent History

In this section we describe the Fourier transform of the history of the latent process that we

shall use in the sequel. A reference is Rahman (2011).

Let {yi}∞i=1 be a real-valued random process defined on the positive integers. Let Y (·)
mapping R into R be the left-continuous random process Y (t) =

∑∞
i=1 i

−3yiI[i,i+1)(t) where
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IA(t) denotes the indicator function; i.e., IA = 1 if t ∈ A and 0 else.

LEMMA 1 If 1
n

∑n
i=1 |yi|

p converges almost surely as n tends to infinity, then Y ∈ Lq

almost surely for all 1 ≤ q ≤ p.

Proof Let ȳn = 1
n

∑n
i=1 |yi|

p. Given ǫ > 0 there is an N such that n > N implies m − ǫ <
ȳn < m + ǫ for some m ≥ 0 except on an event that occurs with probability zero. Because

i−3p|yi|p = i−3p+1ȳi − i−3p+1ȳi−1 + i−3pȳi−1,

−2ǫ
n∑

i=1

i−3p−1 + (m− ǫ)
n∑

i=1

i−3p ≤
n∑

i=1

i−3p |yn|p ≤ 2ǫ
n∑

i=1

i−3p−1 + (m+ ǫ)
n∑

i=1

i−3p.

Therefore
�∞

−∞
|Y (t)|p dt = limn→∞

∑n
i=1 i

−3p |yi|p ≈ m
�∞

1/2
x−3p dx. On a probability space,

almost sure convergence of 1
n

∑n
i=1 |yi|

q for q = p implies it for 1 ≤ q ≤ p. ✷

For p = 2 Lemma 1 implies that Y is in both L1 and L2. Such functions have a Fourier

transform

Ŷ (ω) =

� ∞

−∞

Y (t)e−iωt dt

that is in L2 and can be inverted to obtain yt using

yt =
t3

2π

� ∞

−∞

Ŷ (ω)eiωt dω. (38)

Write

Ŷ (ω) = A(ω) + iB(ω).

Because yt is real, we must have that A(ω) is an even function and B(ω) is an odd function.

The two functions A and B in L2 will be the objects of interest in later sections. They

need a sieve representation. One has considerable flexibility because there are many basis

functions for L2. Of those for which (38) has a known analytic expression, the basis functions

ωne−ω
2/4 are convenient for representing even and odd functions:

A(ω) =
√
π

∞∑

k=0

ak ω
2ke−ω

2/4 (39)

B(ω) =
√
π

∞∑

k=0

bk ω
2k+1e−ω

2/4.
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The corresponding sieve is

AK(ω) =
√
π

K∑

k=0

ak ω
2ke−ω

2/4 (40)

BK(ω) =
√
π

K∑

k=0

bk ω
2k+1e−ω

2/4.

Application of (38) yields

yt = t3 e−t
2

K∑

k=0

(−1)k [akH2k(t)− bkH2k+1(t)] , (41)

where Hn(·) denotes a Hermite polynomial of degree n. The Hermite polynomials can be

computed from the recursion

H0(x) = 1

H1(x) = 2x

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x).

Lemma 1 remains true if Y is replaced by
∑∞

i=1 i
−3yiI[i/N,i/N+1)(t/N) for some positive

integer N in which case (41) becomes

yt = (t/N)3 e−(t/N)2
K∑

k=0

(−1)k [akH2k(t/N)− bkH2k+1(t/N)] . (42)

Computations will be more stable if N is close to the sample size T . Although in theory

N must remain fixed as sample size T increases so that A and B do not drift with T , in

an application one can set N to the largest value of T that one envisages arising during the

course of computations.

When yt computed according to (42) are used in connection with GMM one will need

instruments to identify the {ak, bk}Kt=0. The set {(t/N)3e−(t/N)2Hj(t/N)}2J+1
j=0 will serve as

a set of identifying instruments if J = K and overidentifying if J > K. Often models will

have a scale factor multiplying yt. This scale factor will need to be set to one to achieve

identification. Similarly, an additive location parameter should be set to zero.

We end this subsection by noting that for Λt ∈ R
K the above holds withAK , BK , A,B, ak, bk ∈

R
K , which amounts to applying the results above to Λt elementwise. Apologies for using K

to mean both the dimension of Λ and the order of the sieve.
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5.2 Construction of a approximate likelihood

As above, let h : R
J × R

K × R
D → R

M be a set of M moment conditions involving J

observable variables Xt and K latent variables Λt. Similarly to the foregoing, a limited

information state space model is defined as

E [h(Xt+1,Λt+1, β0)|It] = 0 (43)

Λt+1 ∼ p(Λt+1|I0,t, θ) (44)

where It = {X1,Λ1, X2,Λ2, . . . , Xt,Λt} is the information set at time t and I0,t = {Λ1,Λ2, . . . ,Λt}.
The system in (43) and (44) implies a set of M conditional moment conditions

E[g(Xt+1,Λt+1, θ0)|I0,T ] = 0. (45)

Estimation of θ0 = (β0, A0, B0,Σ0) is the objective of the statistical analysis, where (A0, B0)

is the representation of {I0,t : t = 1, . . . ,∞} given in Section 5.1.

The moment equations g(Xt+1,Λt+1, θ) have exactly the same form as would obtain in

a conventional GMM analysis were Λt+1 observed from data. The difference is that instead

of Λt+1 being observed it is computed using (38) from the successive choices for (A,B), as

approximated by (AK , BK), chosen during the course of computations by an optimization

algorithm. With this, the notation above becomes redundant because knowledge of θ, hence

(A,B), implies knowledge of {Λ1,Λ2, . . . ,ΛT}. Therefore, hereafter we write

g(Xt+1, θ) (46)

instead of g(Xt+1,Λt+1, θ).

The approximate likelihood p̂(X, θ) is based on a transformation of the GMM objective

function:

p̂(X, θ) = [2π det Σ(X, θ)]−M/2 exp

{
−1

2
gT (X, θ)′ [Σ(X, θ)]−1 gT (X, θ)

}
. (47)

where

gT (X, θ) =
1√
T

T∑

t=1

g(Xt, θ),
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Σ(X, θ) =
1

T

T∑

t=1

[g̃(Xt, θ)] [g̃(Xt, θ)]
′ , (48)

g̃(Xt, θ) = g(Xt, θ)−
1√
T
gT (X, θ).

Depending on the nature of the dynamics and moments, a HAC estimator (Gallant, 1987,

p. 445) of Σ(X,Λ, θ) may have to be substituted for (48). Given the approximate likelihood

p̂(X, θ), we propose solving

max
θ∈Θ

p̂(X, θ) (49)

or drawing from a posterior distribution

p̂(θ|X) ∝ p̂(X, θ)p(θ), (50)

either of which can be accomplished by MCMC. The output of the procedure is a Markov

chain that can be used to construct estimators of θ0. Another attractive feature of the

procedure is that it recovers a limited information distribution of the latent variables Λ

conditional on X. In many applications, this is useful as it may serve as a way to assess the

quality of the model.

5.3 Theoretical justification

Direct application of Chen and Shen (1998) and Chen, Liao, and Sun (2012).

5.4 Example

We applied the particle filter method and the sieve method to the same realization of the

stochastic volatility model of Section 2.1 with ρ set to zero. Comparing Figures 13 and 14

one sees that the sieve estimate of Λ appears overly smooth and far less accurate than the

particle filter estimate.

(Figure 13 about here)

(Figure 14 about here)
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6 Conclusion

We have presented three methods for estimating the parameters of dynamic models with

unobserved variables using only moment conditions.

The first, Bayes, has a well developed theory and performs well in applications. It is

computationally intensive.

The second, particle filtering, has a less well developed theory but does perform well in

the computational experiments that we have undertaken. It is computationally intensive.

The third, sieves, has a well developed theory but performs erratically in the compu-

tational experiments that we have undertaken. It appears to markedly over smooth and

sometimes misses the history of the latent variables entirely. It also has several tuning pa-

rameters that need adjustment, which can be time consuming. The problems just noted may

be the consequence of a poor choice of a sieve to implement the method. The sieve approach

is far less computationally demanding than the other two methods.
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Table 1. EM PF GMM Estimates for the SV Model

Parameter True Value Mean Mode Standard Error

Jacobian Term in Psudo-Likelihood

ρ 0.9 0.94632 0.94204 0.029038

φ 0.9 0.92683 0.94940 0.028233

σ 0.5 0.43177 0.37377 0.038772

No Jacobian Term in Psudo-Likelihood

ρ 0.9 0.92717 0.96607 0.044129

φ 0.9 0.85233 0.98538 0.133490

σ 0.5 0.32223 0.52055 0.287690

Flury and Shephard Estimator

ρ 0.9 0.91283 0.91525 0.008078

φ 0.9 0.85020 0.83711 0.051060

σ 0.5 0.72344 0.77463 0.104650

Data of length T = 100 was generated by simulating the model of Subsection 2.1 at
the values shown in the column labeled true. In the first two panels the model was
estimated by using the methods described in Section 4. In the third panel the estimator
is the Bayesian estimator proposed by Flury and Shepard (2010). It is a standard
maximum likelihood particle filter estimator except that the seed changes every time
a new θ is proposed with N increased as necessary to control the rejection rate of the
MCMC chain. In all panels the number of particles is N = 5000. The columns labeled
mean, mode, and standard deviation are the mean, mode, and standard deviations of
an MCMC chain of length 400,000.
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Table 2. EM PF GMM Estimates for the DSGE Model

Parameter True Value Mean Mode Standard Error

Jacobian Term in Psudo-Likelihood

ρz 0.15 0.14848 0.14654 0.00154

ρφ 0.68 0.66901 0.67450 0.00547

φλ 0.56 0.56005 0.55316 0.00561

σz 0.71 0.70081 0.70593 0.00592

σφ 2.93 2.92730 2.92010 0.00481

σλ 0.11 0.11096 0.11629 0.00354

ν 0.96 0.96017 0.96305 0.00334

β 0.996 0.996 0.996 fixed

No Jacobian Term in Psudo-Likelihood

ρz 0.15 0.23546 0.05580 0.11487

ρφ 0.68 0.56419 0.64537 0.10375

φλ 0.56 0.65883 0.63018 0.05018

σz 0.71 0.57542 0.53044 0.11520

σφ 2.93 2.88670 2.84500 0.13054

σλ 0.11 0.11661 0.11726 0.00799

ν 0.96 0.85246 0.84432 0.09713

β 0.996 0.996 0.996 fixed

Data of length T = 100 was generated by simulating the model of Subsection 2.2 at
the values shown in the column labeled true. The model was estimated by using the
methods described in Section 4 with a Jacobian term. The number of particles is
N = 10000. The columns labeled mean, mode, and standard deviation are the mean,
mode, and standard deviations of an MCMC chain of length 200000.
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Figure 1. GMM Probability Assignment. Under the assumption that X̄

and Λ have joint density p(X̄,Λ) = 1√
2π

e−
n

2
(X̄−Λ)2

s2 where X̄ = 1
n

∑n

i=1 Xi and

s2 = 1
n−1

∑n

i=1(Xi − X̄)2, joint probability on (X̄,Λ) can only be assigned to sets

bounded by 45 degree lines such as the one labeled B(X̄,Λ) in the figure. The condi-

tional probability for a set such as C(X̄|Λ) in the figure is computed as

P (C |Λ) =

�

C
p(X̄,Λ) dX̄

�∞
−∞ p(X̄,Λ) dX̄

The conditional probability P (C |Λ) also attaches itself to sets of the form Cn =

{(X1, . . . ,Xn) : X̄ ∈ C } by the change of measure formula. Information is lost relative

to the full likelihood p(X1, . . . ,Xn |Λ) because only the σ-algebra containing all sets of

the form Cn in R
n can be assigned conditional probability by the density p(X̄,Λ). In

particular, bounded rectangles in R
n will not be in this σ-algebra and therefore cannot

be assigned conditional probability whereas they can be assigned probability by the

full likelihood.
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Figure 2. The Posterior Mean of the Monthly Pricing Kernel. Plotted as the

solid line is the posterior mean of log(Λ2), ..., log(Λ551) under a loose prior. The dotted

lines are plus and minus one standard deviation. The units of the vertical axis are the

exponential of the plotted quantity.
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Figure 3. Particle Filter Estimate of Λ, Time Series Plot. Data of length

T = 100 was generated from a simulation of the model of Subsection 2.1 and estimated

using the method described in Section 4 with a Jacobian term. The blue line plots

the simulated Λ. At the values in the column labeled True in Table 1, the red line is

the pointwise mean of the N = 5000 particles and the dashed black lines are plus and

minus two pointwise standard errors. The moment equations were (1) through (6); a

one lag HAC estimator was used for (24).
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Figure 4. Particle Filter Estimate of Λ, Scatter Plot. As for Figure 3 except

that plotted is the pointwise mean of the N = 5000 particles vs. the simulated Λ.
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Figure 5. Particle Filter Estimate of Λ, Time Series Plot. As for Figure 3

except that estimation is without a Jacobian term.
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Figure 6. Particle Filter Estimate of Λ, Scatter Plot. As for Figure 5 except

that plotted is the pointwise mean of the N = 5000 particles vs. the simulated Λ.
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Figure 7. Particle Filter Estimate of Λ, Time Series Plot. As for Figure 3

except that plotted is a filter, not a smooth, and weighting is by the measurement

density, not GMM.

36



−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

o
ooo

o
o
o o

o
o

o

o
o

o o

o
o

o

o
oo

o
o

o

o

ooo

o
o

o

o
o

o
o

o o
oo

o
o

o
o

o
o

oo
o

o
o

o
o

o
o o o

o o
o
o

o o
o

o

o
oo

o

o

o ooo

o
o

o
o

o

o

o
oo

o o

o o
o

o o
o

o
o

o
ooo o

oo

o

Figure 8. Particle Filter Estimate of Λ, Scatter Plot. As for Figure 7 except

that plotted is the pointwise mean of the N = 5000 particles vs. the simulated Λ.
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Figure 9. PF Estimate of Λ with Jacobian, Time Series Plot. Data of length

T = 100 was generated by simulating the model of Section 2. The blue line plots the

simulated Λ. at the values in the column labeled True in Table 2. The red line is the

pointwise mean of the N = 10000 particles and the dashed black lines are plus and

minus two pointwise standard errors. The moment equations were (7) through (14); a

two lag HAC estimator was used for (24).
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Figure 10. As for Figure 9 except that plotted is the pointwise mean of the N = 10000

particles vs. the simulated Λ.
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Figure 11. PF Estimate of Λ without Jacobian, Time Series Plot. As for

Figure 9 but without a Jacobian term in the psuedo likelihood
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Figure 12. PF Estimate of Λ without Jacobian, Scatter Plot. As for Figure 10

but without a Jacobian term in the psuedo likelihood
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Figure 13. Sieve Estimate of Λ. Data of length T = 100 was generated by

simulating the model of Section 2 at the parameter values shown except that ρ = 0.

The blue line plots the simulated Λ. The red line is maximum likelihood estimate of Λ

using the likelihood described in Subsection 5.2 with K = 6.
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