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frequencies

George Tauchen Viktor Todorov
Duke University Northwestern University

2013



Empirical Distribution of Scaled Increments of Itô Semimartingales May 2013

Motivation

The standard model

dXt = αtdt + σtdWt + dYt,

where

• αt is the drift,

• Wt is Brownian motion,

• σt is stochastic volatility,

• Yt is the jump component.
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Motivation

High-frequency data makes possible recovering functions of realized volatility path from

discrete observations of X:

• integrated volatility
∫ T

0
σ2
sds,

• integrated functions of volatility
∫ t

0
f(σs)ds for some smooth f(·),

• spot volatility σ2
t ,

• volatility occupation times
∫ T

0
1{σs∈A}ds.
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Motivation

The volatility high-frequency estimators are based on the “local Gaussianity” in X:

1
√
h
(Xt+sh − Xt)

L−→ σt × (Bt+s − Bs), as h → 0 and s ∈ [0, 1],

where Bt is a Brownian motion and the above convergence is for the Skorokhod topology.

Local Gaussianity has two important features:

• the scaling factor of the increments is 1/
√
h,

• the limiting distribution of the increments is Gaussian.

3



Empirical Distribution of Scaled Increments of Itô Semimartingales May 2013

Main Results

• The local Gaussianity critical for the statistical/econometric work.

• The goal of the paper is to make it testable.

• We estimate locally volatility.

• We scale the high-frequency increments by the local volatility estimates.

• We derive the limiting behavior of the empirical cdf of the scaled increments when X

is jump-diffusion or when it is pure-jump.

• We apply the limit theory to propose Kolmogorov-Smirnov type tests for the jump-

diffusion Itô semimartingale class of models.
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Outline

• Construction of the Empirical Distribution of Scaled Increments of Itô Semimartingales

• Convergence in Probability

• Feasible CLT and testing Local Gaussianity

• Monte Carlo

• Empirical Illustration
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Empirical CDF of “Devolatilized” Increments

Setting:

• we observe X on the discrete grid 0, 1
n,

2
n, ....1 with n → ∞,

• we split high-frequency observations into blocks containing kn observations with

kn → ∞ such that kn/n → 0.

To “devolatilize” increments we use a local jump-robust estimator of volatility:

V̂
n
j =

π

2

n

kn

jkn∑
i=(j−1)kn+2

|∆n
i−1X||∆n

i X|, j = 1, ..., ⌊n/kn⌋,

which is local Bipower Variation.

Note: for the behavior of our statistic in the pure-jump case it is important to use Bipower

Variation.
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Empirical CDF of “Devolatilized” Increments

To form the statistic we need to “filter” the “big” jumps. The total number of the

remaining high-frequency observations is

N
n
(α,ϖ) =

⌊n/kn⌋∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1

(
|∆n

i X| ≤ α
√

V̂ n
j n

−ϖ

)
,

where α > 0 an ϖ ∈ (0, 1/2) and 0 < mn < kn.

Note: the truncation depends on the local volatility estimator.
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Empirical CDF of “Devolatilized” Increments

The empirical CDF of the “devolatilized” and truncated increments is

F̂
n
(τ) =

1

Nn(α,ϖ)

⌊n/kn⌋∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1


√
n∆n

i X√
V̂ n
j

1{
|∆n

i
X|≤α

√
V̂ n
j
n−ϖ

} ≤ τ

 .
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Limit Behavior when X is Jump-Diffusion

We have under some regularity conditions:

F̂n(τ)
P−→ Φ(τ), as n → ∞,

where the above convergence is uniform in τ over compact subsets of (−∞, 0)∪(0,+∞)

and Φ(τ) is the cdf of a standard normal variable.

9



Empirical Distribution of Scaled Increments of Itô Semimartingales May 2013

Limit Behavior when X is Pure-Jump

A more general setting for X is the following model

dXt = αtdt + σt−dSt + dYt,

where αt, σt and Yt are processes with càdlàg paths adapted to the filtration and Yt is of

pure-jump type. St is a stable process with a characteristic function given by

log
[
E(eiuSt)

]
= −t|cu|β (1 − iγsign(u)Φ) , Φ =

{
tan(πβ/2) if β ̸= 1,

−2
π log |u|, if β = 1,

where β ∈ (0, 2] and γ ∈ [−1, 1].
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Limit Behavior when X is Pure-Jump

• When β = 2, above model is the standard jump-diffusion.

• When β < 2, the above model is of pure-jump type with “locally stable” jumps.

Local Gaussianity generalizes to local Stability:

h
−1/β

(Xt+sh − Xt)
L−→ σt × (S

′
t+s − S

′
t), as h → 0 and s ∈ [0, 1],

for every t and where S′
t is a Lévy process identically distributed to St.

Note:

• the different scaling factor,

• and the different limiting distribution.
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Limit Behavior when X is Pure-Jump

What happens with F̂n(τ) in the pure-jump setting?

Recall the scaled “devolatilized” increments are

√
n∆n

i X√
V̂ n
j

=
n1/β∆n

i X√
n2/β−1V̂ n

j

,

and
√

n2/β−1V̂ n
j is a consistent estimator for σt in the pure-jump setting.

12



Empirical Distribution of Scaled Increments of Itô Semimartingales May 2013

Limit Behavior when X is Pure-Jump

Under some regularity conditions we have if β ∈ (1, 2]

F̂n(τ)
P−→ Fβ(τ), as n → ∞,

where the above convergence is uniform in τ over compact subsets of (−∞, 0)∪(0,+∞);

Fβ(τ) is the cdf of
√

2
π

S1
E|S1|

(S1 is the value of the β-stable process St at time 1) and

F2(τ) equals the cdf of a standard normal variable Φ(τ).

Note:

• Fβ(τ) corresponds to the cdf of a random variable Z with E|Z| =
√

2
π ,

• =⇒ the difference between β < 2 and β = 2 will be in the relative probability

assigned to “big” versus “small” values of τ .
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Limit Behavior when X is Itô semimartingale + Noise

What happens if X (either jump-diffusion or pure-jump) is contaminated with noise:

X
∗
i
n
= X i

n
+ ϵ i

n
,

where
{
ϵ i
n

}
i=1,...,n

are i.i.d. random variables defined on a product extension of the

original probability space and independent from F and we further assume E|ϵ i
n
|1+ι < ∞

for some ι > 0.
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Limit Behavior when X is Itô semimartingale + Noise

What happens with F̂n(τ) in the noisy setting?

Recall the scaled “devolatilized” increments are

√
n∆n

i X
∗√

V̂ n
j

=
∆n

i X
∗√

n−1V̂ n
j

,

and n−1 is the correct scaling factor that ensures V̂ n
j converges to a non-degenerate limit.
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Limit Behavior when X is Itô semimartingale + Noise

Under certain regularity conditions we have

F̂n(τ)
P−→ Fϵ(τ), as n → ∞,

where the above convergence is uniform in τ over compact subsets of (−∞, 0)∪(0,+∞)

and

• we denote µ =
√

π
2

√
E
(
|ϵ i

n
− ϵi−1

n
||ϵi−1

n
− ϵi−2

n
|
)
,

• Fϵ(τ) is the cdf of 1
µ

(
ϵ i
n
− ϵi−1

n

)
.
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Limit Behavior when X is Itô semimartingale + Noise

If ϵ i
n
is normally distributed then

√
n∆n

i X
∗√

V̂ n
j

≈ N(0, σ
2
),

where

σ
2
=

2
π
2E (|ξ1 + ξ2||ξ2 + ξ3|)

,

with ξ1, ξ2 and ξ3 independent standard normals.

Note: σ2 < 1.
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CLT when X is jump-diffusion

Theorem 1. Let Xt be jump-diffusion satisfying some regularity conditions. Further, let

the block size grow at the rate

mn

kn

→ 0, kn ∼ n
q
, for some q ∈ (0, 1/2), when n → ∞.

We then have locally uniformly in subsets of (−∞, 0) ∪ (0,+∞)

F̂n(τ) − Φ(τ) = Ẑ
n
1 (τ) + Ẑ

n
2 (τ) +

1

kn

τ2Φ
′′
(τ) − τΦ′(τ)

8

((
π

2

)2

+ π − 3

)

+ op

(
1

kn

)
,
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CLT when X is jump-diffusion

with the pair (Ẑn
1 (τ), Ẑn

2 (τ)) having the following limit behavior

(√
⌊n/kn⌋mnẐ

n
1 (τ)

√
⌊n/kn⌋knẐ

n
2 (τ)

)
L−→ (Z1(τ) Z2(τ)) ,

where Φ(τ) is the cdf of a standard normal variable and Z1(τ) and Z2(τ) are two

independent Gaussian processes with covariance functions

Cov (Z1(τ1), Z1(τ2)) = Φ(τ1 ∧ τ2) − Φ(τ1)Φ(τ2),

Cov (Z2(τ1), Z2(τ2)) =

[
τ1Φ

′(τ1)

2

τ2Φ
′(τ2)

2

]((
π

2

)2

+ π − 3

)
, τ1, τ2 ∈ R \ 0.
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CLT when X is jump-diffusion

Comments:

• Z1(τ) is the standard Brownian bridge appearing in the Donsker theorem for empirical

processes

• Z2(τ) is due to the estimation of the local scale σt via V̂ n
j

• the third component in F̂n(τ) − Φ(τ) is asymptotic bias

• picking the rate of growth of mn and kn arbitrary close to
√
n, we can make the rate

of convergence of F̂ n(τ) arbitrary close to
√
n

• asymptotic bias and variances are constant =⇒ feasible inference is straightforward

•
√
n rate is in general not possible because of the presence of the drift term in X
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Kolmogorov Smirnov test

The critical region of our proposed test is given by

Cn =

{
sup
τ∈A

√
Nn(α,ϖ)|F̂ n

(τ) − Φ(τ)| > qn(α,A)

}
where recall Φ(τ) denotes the cdf of a standard normal random variable, α ∈ (0, 1),

A ∈ R\0 is a finite union of compact sets with positive Lebesgue measure, and qn(α,A)

is the (1 − α)-quantile of

sup
τ∈A

∣∣∣∣∣Z1(τ) +

√
mn

kn

Z2(τ) +

√
mn

kn

√
n

kn

τ2Φ
′′
(τ) − τΦ′(τ)

8

((
π

2

)2

+ π − 3

)∣∣∣∣∣ ,
with Z1(τ) and Z2(τ) being the Gaussian processes defined in the Theorem.
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Kolmogorov Smirnov test

We have

lim
n

P (Cn) = α, if β = 2 and lim inf
n

P (Cn) = 1, if β ∈ (1, 2).
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Monte Carlo

We test performance on the following models:

• Jump-Diffusion Model

dXt =
√

VtdWt +

∫
R
xµ(ds, dx), dVt = 0.03(1.0 − Vt)dt + 0.1

√
VtdBt,

where (Wt, Bt) is a vector of Brownian motions with corr(Wt, Bt) = −0.5 and µ is

a homogenous Poisson measure with compensator ν(dt, dx) = dt⊗ 0.25e−|x|/0.4472
0.4472 dx

which corresponds to double exponential jump process with intensity of 0.5.

• Pure-Jump Model

Xt = STt, with Tt =

∫ t

0

Vsds,

where St is a symmetric tempered stable martingale with Lévy measure 0.1089e−|x|
|x|1+1.8 and

Vt is the square-root diffusion given above.
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Monte Carlo

Tuning parameters:

• time span: 252 days

• frequency: n = 100 and n = 200 corresponding to 5-min and 2-min sampling

• ⌊n/kn⌋ in the range 1 − 3 blocks per day

• ⌊mn/kn⌋ = 0.75 for n = 100 and ⌊mn/kn⌋ = 0.70 for n = 200

• α = 3 and ϖ = 0.49 for jump cutoff
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Monte Carlo

Table 1: Monte Carlo Results for Jump-Diffusion Model

Nominal Size Rejection Rate

Sampling Frequency n = 100

kn = 33 kn = 50 kn = 100

α = 1% 4.1 0.4 2.2

α = 5% 15.4 3.6 10.6

Sampling Frequency n = 200

kn = 67 kn = 100 kn = 200

α = 1% 1.2 2.0 7.8

α = 5% 4.4 7.1 26.2

Note: For the cases with n = 100 we set ⌊mn/kn⌋ = 0.75 and for the cases with

n = 200 we set ⌊mn/kn⌋ = 0.70.
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Monte Carlo

Table 2: Monte Carlo Results for Pure-Jump Model

Nominal Size Rejection Rate

Sampling Frequency n = 100

kn = 33 kn = 50 kn = 100

α = 1% 27.5 87.4 99.9

α = 5% 66.6 97.5 100.0

Sampling Frequency n = 200

kn = 67 kn = 100 kn = 200

α = 1% 100.0 100.0 100.0

α = 5% 100.0 100.0 100.0

Note: For the cases with n = 100 we set ⌊mn/kn⌋ = 0.75 and for the cases with

n = 200 we set ⌊mn/kn⌋ = 0.70.
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Empirical Application-I

• We use two data sets: IBM stock price and the VIX volatility index, sample period

2003-2008,

• test is performed for each of the years in the sample,

• we perform test at 5-minute and 2-minute frequencies,

• ⌊n/kn⌋ = 2 for the five-minute sampling frequency and ⌊n/kn⌋ = 3 for the

two-minute frequency,

• the range for the KS test is

A = [Q(0.01) : Q(0.40)] ∪ [Q(0.60) : Q(0.99)],

where Q(α) is the α-quantile of standard normal.

27



Empirical Distribution of Scaled Increments of Itô Semimartingales May 2013
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Empirical Application-II

• S&P index, 5-min 2007–2012

• VIX futures prices also 2007–2012

Examine Q-Q plots before and after truncating large jumps.

Examine Q-Q plots for stable-like prices
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QQ-Plot S&P 500, raw and truncated for large jumps
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VIX Futures

Things are not nearly as clear-cut with these data.
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QQ-Plot VIX futures, raw and truncated for large jumps
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VIX futures: Determination of the index β

We need to know the activity index β in order to get a reference stable distribution.

We minimize the mean squared difference of OBS-PRED for Q-Q plot data over a grid of

β.
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Objective Function
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Final Q-Q Plots

We look at Q-Q plots using the Gaussian distribution as the reference and then using

the stable(β̂ = 1.82...) as the reference distribution.

We now look at the left and right tails of Q-Q plots:
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Left and right sides of QQ-Plots of unscaled and scaled
VIX futures vs stable(β̂)
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Conclude

• Can test the core distributional assumption of financial modeling

• Useful for examining risk premiums of jumps of different size.

• Potentially very relevant to regulators who monitor markets to identify unusual trading

patterns.

• Other multivariate applications in progress,
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