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Abstract

This paper proposes an easy to estimate Cobb Douglas marriage match-
ing function (MMF). Special cases include the Choo Siow (CS) MMF, CS
with peer effects, CS with frictional transfers, the Dagsvik Menzel non-
transferable utility MMF and Chiappori, Salanié and Weiss MMF. Given
population supplies and admissible parameters, the Cobb Douglas MMF
exists and is unique. This MMF is estimated on US marriage and co-
habitation data by states from 1990 to 2010. CS with peer effects is
not rejected. There are peer and scale effects in the US marriage markets.
Positive assortative matching in marriage and cohabitation by educational
attainment are relatively stable from 1990 to 2010.

Since the seventies, marital behavior in the United States have changed
significantly. First, for most adult groups, marriage rates have fallen. Second,
starting from a very low initial rate, cohabitation rates have risen significantly.
Because the initial cohabitation rates were so low, the rise in cohabitations did
not compensate for the fall in marriages. So third, the fraction of adults who are
unmatched, i.e. not married or cohabitating, have risen significantly. Evidence
for these trends for women and men between ages 26-30 and 28-32 respectively
are shown in Figure 1 in Appendix C.1

Researchers have investigated different causes for these changes including
changes in reproductive technologies as well as access to them, changes in family
laws, changes in household technologies, changes in earnings inequality and
changes in welfare regimes.2 Most of this research ignored changes in population
supplies over time. Often, they also ignore peer effects in marital behavior.

∗We thank Marcin Peski, Robert McCann and seminar participants for useful discussions.
We also thank SSHRC for financial support.

1Due to the small numbers of cohabitants, the US censuses did not collect data on cohab-
itation before 1990.

2E.g. Burtless 1999; Choo Siow 2006a; Fernandez, Guner and Knowles 2005; Fernandez-
Villaverde, et. al. 2014; Goldin and Katz 2002; Greenwood, et. al. (2012, 2014); Lundberg
and Pollak 2007; Moffitt, et. al. 1998; Stevenson and Wolderers 2007; Waite and Bachrach
2004.
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There were significant changes in population supplies over the time period.
The sex ratio (ratio of male to female) of new college graduates have decreased
from above one in the seventies to below one currently. See Figure 2 in Appendix
C for women and men between ages 26-30 and 28-32 respectively. This change
in the sex ratio may have exacerbated the decline in the marriage rate and also
potentially changed marriage matching patterns.

Peer effects, as well as changes in cultural norms, may have also affected
cohabitation and other marital behavior (E.g. Waite, et. al. 2000; Fernandez-
Villaverde, et. al. (2014)). Using individual level data, Adamopoulou (2012)
shows that there are positive peer effects on the marital decisions of young
adults. Also see Drewianka (2003).

The objective of this paper is to first provide an elementary marriage match-
ing function (MMF), the Cobb Douglas MMF, which can be used to parame-
terize different causes of changes in marital behavior while allowing for peer
effects and changes in population supplies. Then we estimate the changes in the
parameters of the MMF which capture the evolution of marital behavior in the
US between 1990 and 2010.

Our empirical framework builds on recent research on static behavioral
MMFs. Consider a marriage market s at time t. There are I, i = 1, .., I,
types of men and J , j = 1, .., J , types of women. Let Mst be the population
vector of men where a typical element is mi, the supply of type i men. F st

is the population vector of women where a typical element is fj , the supply of
type j women. Each individual can choose to enter a relationship, marriage or
cohabitation, r = [M, C], and a partner (by type) of the opposite sex for the
relationship or not. An unmatched individual chooses a partner of type 0.

Let θst be a vector of parameters. A marriage matching function (MMF)
is a R2IJ

+ vector valued function µ(Mst, F st, θst) whose typical element is µrstij ,
the number of (r, i, j) relationships. µst0j and µsti0 are the numbers of unmatched
women and men respectively. µrstij have to satisfy the following I+J accounting
identities:

J∑
j=1

µMst
ij +

J∑
j=1

µCstij + µsti0 = mst
i , 1 ≤ i ≤ I (1)

I∑
i=1

µMst
ij +

I∑
i=1

µCstij + µst0j = fstj , 1 ≤ j ≤ J (2)

µst0j , µ
st
i0 ≥ 0, 1 ≤ j ≤ J, 1 ≤ i ≤ I.

This paper proposes the Cobb Douglas MMF:

lnµrstij = γrstij + αrij lnµsti0 + βrij lnµst0j ; α
r
ij , β

r
ij ≥ 0 ∀ (r, i, j) (3)

The Cobb Douglas MMF has some useful properties:

• It nests a large class of behavioral MMFs which makes the parameters
easy to interpret.
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• We may interpret γrij as proportional to the mean gross gains to the cou-
ple in relationship r minus the sum of the mean gains to them remain-
ing unmatched for two randomly chosen (i, j) individuals. So one can
parametrize γrstij to study how a particular behavioral mechanism affects
marital matching.

• αrij and βrij are parameters which are affected by peer and scale effects.

• The numbers of unmatched men and women of each type, µst0j and µsti0,
summarize general equilibrium effects as well as the influence of population
supplies.

• The MMF fit any observed marital behavior in a single marriage market.
In fact, the model must be restricted to obtain identification even with
multi-market data. Luckily, identification is transparent.

• Estimation is also easy. The parameters of the MMF can be estimated
using multi-market data by difference in differences and using population
supplies as instruments for the unmatched (Section (3)).

• Given population supplies and parameters, the equilibrium marriage match-
ing distribution µ(Mst, F st, θst) exists and is unique.3 Although there are
2× I ×J elements in µ, the analyst only has to first solve a sub-system of
I + J non-linear equations whose solution is unique (Lemma 1). The rest
of the system is linear. Using this two steps approach, the MMF is easy
to simulate for policy evaluations.4

While equation (3) is in the Cobb Douglas form, it is not a standard produc-
tion function.5 Rather, equation (3) is a set of equilibrium relationships which
define the Cobb Douglas MMF. Therefore it is useful for us to provide some
background on this MMF.

The Cobb Douglas MMF started with Choo Siow (2006a, 2006b; hereafter
CS). Building on Becker (1973, 1974; reprinted in 1991), CS proposed a fric-
tionless transferable utility MMF. They used McFadden (1972) additive random
utility model to model an individual’s utility from any type of partner in rela-
tionship r. For any individual, the idiosyncratic payoff from a partner depends
on their type but not their specific identity. The utility a man g of type i will
get from relationship r with a woman of type j, j = 0, .., J , is:

Urijg = ũrij − τ rij + εrijg (4)

3Uniqueness of equilibrium is not a general property of static frictionless transferable utility
models of the marriage market (E.g. Shi and Shum 2014).

4Feedback from users of the CS MMF (a special case) suggest that a one step numerical
solution is difficult to achieve.

5The standard Cobb Douglas model, lnµrstij = αr
ij lnmst

i + βr
ij ln fstj + γrstij , is not a well

behaved MMF. In general, it will not satisfy the accounting relationships (1) and (2). Nor
does it have spillover effects. I.e. an increase in type i′ men who are close substitutes for type
i men does not affect µrstij .
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ũrij is the systematic gross return to a male of type i matched with a female
of type j in relationship r. τ rij is the transfer made by the man to his partner of
type j. Let a man who remains unmatched marry a type 0 spouse and τi0 = 0.
εrijg is an i.i.d. random variable distributed according to the Type 1 extreme
value distribution.

Utility from a choice consists of two additive terms, a systematic net com-
ponent common to all (r, i, j) matches, urij = ũrij − τ rij , and an idiosyncratic
component, εrijg, which is specific to him.

The man g chooses the partner type and relationship which maximizes his
utility.

Similarly, the utility which a woman k of type j who chooses to match with
a type i man, i = 0, .., I, in relationship r, is:

V rijk = ṽrij + τ rij + εrijk, where (5)

ṽrij is the systematic gross return to a female of type j matched with a
male of type i in relationship r. τ rij is the transfer made by her partner to
her. A woman who remains unmatched marries a type 0 spouse and τ0j = 0.
εrijk is an i.i.d. random variable distributed according to the Type 1 extreme
value distribution. So in addition to differences in gross systematic gains from
marriage, female partners receive transfers, positive or negative, from their male
partners.

The marriage market clears when faced with equilibrium transfers, all type
i men who want to marry type j women in relationship r will find a woman to
match with and vice versa for all (r, i, j).

CS shows that market equilibrium will generate the following MMF:

ln
µrij√
µi0µ0j

= πrij ∀ (r, i, j) (6)

πrij = ũrij + ṽrij − ũi0 − ṽ0j (7)

where µrij is the number of type i men matched to type j women. µi0 and µ0j

are the numbers of unmarried type i men and type j women respectively. πrij
are the gross systematic payoffs to marriage for (i, j) couples relative to them
remaining unmarried. CS calls πrij the gains to marriage. ũrij + ṽrij is known as
marital output or surplus. As observed by CS, if we only observe the left hand
side of (6), only πrij , and not its separate components, are identified.

The CS MMF fits any observed marriage distribution in a single marriage
market. It obeys constant returns to scale in population vectors.

Assuming no cohabitation and dropping the r superscript, let θ be the set
of πij . Decker, et. al. (2013) showed that for any admissible (M,F, θ), µ exists
and is unique. Decker, et. al. and then Graham (2011) also proceeded to
provide comparative statics for the CS model. CS and Siow (forthcoming) show
which parameters and characteristics of the marital surplus function, ũij + ṽij ,
are identified.
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Also ignoring cohabitation, the subsequent theoretical literature has branched
in two directions. One branch relaxes the specification of the idiosyncratic com-
ponent of utility from a partner type choice, εijg. This branch retains the sys-
tematic gross gains from marriage, ũij and ṽij , from CS and the use of transfers
to clear the marriage market.

Chiappori, Salanié and Weiss (2012; hereafter CSW) and Graham (2011)
extends CS to incorporate heteroskedastic idiosyncratic payoffs by gender and
type. Let σi and Σj be the standard deviation of the idiosyncratic payoff for a
type i male and type j female respectively. The CSW MMF is:

lnµij =
σi

σi + Σj
lnµi0 +

Σj
σi + Σj

lnµ0j +
πij

σi + Σj
; ∀ (i, j) (8)

CSW obeys constant returns to scale.
Galichon and Salanié (2013) significantly relaxes the iid Type 1 extreme

value distribution of CS and their general model is not nested here. They also
show that their MMFs can be derived from a utilitarian social planner choosing
marital matches in order to maximize aggregate marital output. In personal
communication, Galichon said that all the MMFs in Galichon and Salanié also
obey constant returns to scale. In another important extension, Dupuy and
Galichon (2012) extends the CS model to account for continuous types.

The second branch studies other behavioral specifications for the systematic
net return from relationships, urij = ũij − τ rij and vrij = ṽrij + τ rij . Again ignoring
cohabitation, Dagsvik (2000) assumed that transfers are not available to clear
the marriage market. So τij = 0, and uij = ũij and vij = ṽij . He also assumed
that the idiosyncratic payoff of man g of type i marrying woman k of type j,
εijgk, is distributed i.i.d. Type 1 extreme value. He used the deferred accep-
tance algorithm to solve for a marriage matching equilibrium and obtained the
following non-transferable utility MMF for large marriage markets:

lnµij = lnµi0 + lnµ0j + πij ∀ (i, j) (9)

Menzel (2014) showed that (9) obtains under less restrictive assumptions
about the distribution of εijgk. Call (9) the DM MMF. The DM MMF also fits
any observed marriage distribution. Based on simulations, it obeys increasing
return to scale in population vectors.

Chiappori and Salanié (2014) has a state of the art survey of the above and
related models.

This paper follows the second branch by studying alternative specifications
to the systematic net return from relationships. We retain the Type 1 extreme
value distribution assumption of CS for the idiosyncratic component of utility
from partner choice. Instead, we focus on a different behavioral specification of
net utilities, urij and vrij . We propose a CS marriage matching model with peer
effects (CSPE). Our specification for net utility of a (r, i, j) relationship for a
man and a woman is urij = ũrij + φri lnµrij − τ rij and vrij = ṽrij + Φrj lnµrij + τ rij
respectively. We assume that 0 ≤ φri ,Φ

r
j ≤ 1. In this setup, the systematic net
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utilities are affected by how many other individuals of the same type make the
same decision.

Our model of multinomial choice with peer effects builds upon Brock and
Durlauf (2001). What is new is our application to two sided frictionless matching
with equilibrium transfers. The CSPE MMF is:

lnµrij =
1− φ0

i

2− φri − Φrj
lnµi0 +

1− Φ0
j

2− φri − Φrj
lnµ0j +

πrij
2− φri − Φrj

∀ (r, i, j)

CS, DM and CSW are all special cases of CSPE. Unlike CS and CSW,
CSPE does not impose constant returns to scale to population vectors. Due to
the presence of peer effects, CSPE is not in the Galichon Salanié class.

When we extend the CS, CSW and DM MMF to additional types of relation-
ships, the log odds of the numbers of different types of relationships, ln(µMij /µ

C
ij),

is independent of the sex ratio, ln(mi/fj). Independence is a very strong as-
sumption. Arciadiacono, et. al. (2010) shows that independence does not hold
for sexual versus non-sexual boy girl relationships in high schools. This paper
shows that independence also does not hold for cohabitation versus marriage.
CSPE relaxes independence albeit in a restricted manner. The Cobb Douglas
MMF relaxes independence more flexibly.

CSPE is a special and testable case of the Cobb Douglas MMF.
When i and j are unidimensional and ordered, supermodularity of the mar-

riage distribution µrij , i.e. totally positive of order 2 or TP2, is proportional to
the degree of supermodularity of the marital output function, ũrij + ṽrij . Thus
supermodularity of the marital output function is testable even in the presence
of peer effects in marriage matching.

Mourifié and Siow (in process; CSFT) studies a CS model with piecewise
linear frictional transfers.6 CSFT is a special case of the Cobb Douglas MMF
but not CSPE. So we will not discuss CSFT further here.

The Cobb Douglas MMF nests CS, CSW, DM, CSPE and CSFT as special
cases. Since the special cases include frictionless transferable utility models,
non-transferable utility models and models with frictional transfers, we should
be modest in our ability to determine the importance of transfers in equilibrating
the marriage market. Although we are partial to CSPE and it is not rejected
empirically, it should be clear that we propose the Cobb Douglas MMF precisely
because we do not want to insist on a particular behavioral model of the marriage
market.

This paper also makes a methodological contribution. The variational tech-
niques used by Decker, et. al. and Galichon Salanié cannot be directly applied
to show existence and uniqueness of equilibrium. Using an alternative approach,
we show that the equilibrium marriage distribution of the Cobb Douglas MMF
exists and is unique. Building on Graham (2013), we also derive comparative
static results for CSPE.

6Galichon, et. al. (in process) also studies a CS style model with a general frictional
transfer technology. They focus on different issues and use a different analytic approach. The
two papers are complementary.
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We estimate the Cobb Douglas MMF with marriage and cohabitation data
across states for women and men between ages 26-30 and 28-32 respectively
from the US Censuses in 1990 and 2000, and the American Community Surveys
around 2010. Men and women are differentiated by their educational attain-
ment. This empirical analysis builds on Siow and CSW.

Our empirical results show that:

• From a descriptive (goodness of fit) point of view, the Cobb Douglas MMF
provides a reasonably complete and parsimonious description of the US
marriage market by state from 1990 to 2010.

• CS, CSW and DM are rejected by the data.

• CSPE is not rejected by the data.

• There are peer and scale effects in US marriage markets.

• Independence of the log odds of the number of cohabitations to the number
of marriages to the sex ratio is rejected.

• Consistent with CSW and Siow, to a first order, there is no general increase
in positive assortative matching (PAM) by educational attainment from
1990 to 2010.

• Consistent with CSW and many other observers, gains to marriage de-
clined from 1990 to 2010. We further show that gains to cohabitation
increased.

The organization of the paper is as follows. The next section presents CSPE.
The Cobb Douglas MMF is presented next followed by the empirical application.

1 Marriage matching with peer effects

There are I types of men and J types of women. For sake of simplicity we
assume only two types of relationship, cohabitation and marriage, r = [M, C].
Therefore, every individual can decide to cohabit, marry or remain unmatched.
For a type i man to match with a type j woman in relationship r, he must
transfer to her a part of his utility that he values as τ rij . The woman values the
transfer as τ rij . τ

r
ij may be positive or negative.

There are 2 × I × J matching sub-markets for every combination of rela-
tionship, and types of men and women. A matching market clears when, given
equilibrium transfers τ rij , the demand by men of type i for type j women in
the relationship r is equal to the supply of type j women for type i men in the
relationship r for all (r, i, j). To implement the above framework empirically, we
adopt the extreme value random utility model of McFadden to generate mar-
ket demands for matching partners. Each individual considers matching with a
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member of the opposite gender. Let the utility of male g of type i who matches
a female of type j in a relationship r be:

Urijg = ũrij + φri lnµrij − τ rij + εrijg, where (10)

ũrij + φri lnµrij : Systematic gross return to a male of type i matching to a
female of type j in relationship r.

φri : Coefficient of peer effect for relationship r. 1 ≥ φri ≥ 0.
µrij : Equilibrium number of (r, i, j) relationships.
τ rij : Equilibrium transfer made by a male of type i to a female of type j in

relationship r.
εrijg: i.i.d. random variable distributed according to the Type 1 extreme

value distribution.
Due to the peer effect, the net systematic return is increased when more

type i men are in the same relationships. It is reduced when the equilibrium
transfer τ rij is increased.

The above empirical model for multinomial choice with peer effects is stan-
dard. See Brock and Durlauf (2001).

And ũi0 + φ0
i lnµ0

i0 is the systematic payoff that type i men get from re-
maining unmatched. We allow the peer effect to differ by relationship. For
example, unmarried individuals spend more time with their unmarried friends
than married individuals with their married friends. On the other hand, due to
their higher shadow cost of time, married individuals may want to live in com-
munites with couples like themselves so that local firms will provide services to
them. So there is no apriori reason to rank φ0

i versus φri .
Individual g will choose according to:

Uig = max
j,r
{Ui0g, UMi1g, ..., UMijg, ..., UMiJg, UCi0g, ..., UCijg, ..., UCiJg}

Let (µrij)
d be the number of (r, i, j) matches demanded by i type men and (µi0)d

be the number of unmatched i type men. Following the well known McFadden
result, we have:

(µrij)
d

mi
= P(Urijg − Ur

′

ikg ≥ 0, k = 1, ..., J ; r′ = (M, C))

=
eũ

r
ij+φr

i lnµr
ij−τ

r
ij

eũi0+φ0
i lnµi0 +

∑
r′∈{M,C}

∑J
k=1 e

ũr′
ik+φr

i lnµr′
ij−τr′

ik

, (11)

where mi denotes the number of men of type i. Using (11) we can easily derive
the following relationship:

ln
(µrij)

d

(µi0)d
= ũrij − ũi0 + φri lnµrij − φ0

iµi0 − τ rij , (12)

The above equation is a quasi-demand equation by type i men for (r, i, j)
relationships.
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The random utility function for women is similar to that for men except that
in matching with a type i men in an (r, i, j) relationship, a type j women receives
the transfer, τ rij . Let ṽrij + Φrj lnµrij denotes the systematic gross gain that type
j women get from matching type i men in the relationship r. Φrj , 1 ≥ Φrj ≥ 0,

is her peer effect coefficient in relationship (r, i, j). And ṽ0j + Φ0
j lnµ0

0j is the
systematic payoff that type j women get from remaining unmatched. Let (µrij)

s

be the number of i, j matches offered by j type women for the relationship r
and (µ0j)

s the number of type j women who want to remain unmatched. The
quasi-supply equation of type j women for (r, i, j) relationships is given by:

ln
(µrij)

s

(µ0j)s
= ṽrij − ṽ0j + Φrj lnµrij − Φ0

j lnµ0j + τ rij . (13)

The matching market clears when, given equilibrium transfers τ rij , the de-
mand of type i men for (r, i, j) relationships is equal to the supply of type j
women for (r, i, j) relationships for all (r, i, j):

(µrij)
d = (µrij)

s = µrij . (14)

Substituting (14) into equations (12) and (13) we get:

lnµrij =
1− φ0

i

2− φri − Φrj
lnµi0 +

1− Φ0
j

2− φri − Φrj
lnµ0j +

πrij
2− φri − Φrj

(15)

πrij = ũrij − ũi0 + ṽrij − ṽ0j (16)

The above is the CS model with peer effects, the CSPE MMF.
When there is no peer effect or all the peer effect coefficients are the same

(homogeneous peer effects),

φ0
i = Φ0

j = φri = Φrj

we recover the CS MMF. That is,

Proposition 1 No peer effect, or homogenous peer effects, generates observa-
tionally equivalent MMFs.

Put another way, the above proposition says if we cannot reject CS using
marriage matching data alone, we also cannot reject homogenous peer effects.
This lack of identification is our version of the reflection problem in Manski’s
linear-in-mean peer effects model. See Manski (1993).

On the other hand,

Corollary 1 When
1−φ0

i

2−φr
i−Φr

j
6= 1

2 and/or
1−Φ0

j

2−φr
i−Φr

j
6= 1

2 , non-homogenous peer

effects are present.
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The above corollary says that non-homogenous peer effects are generically
detectable. This corollary is related to identification of linear models with non-
homogenous peer effects.7

When
1− φ0

i

2− φri − Φrj
=

1− Φ0
j

2− φri − Φrj
= 1

we recover the DM MMF. Intuitively in this case, we want the peer effect
on relationships to be significantly more powerful than that for remaining un-
matched. E.g. φ0

i = Φ0
j = 0 and φri = Φrj = 1

2 .
Also, when

φ0
i + Φ0

j = φri + Φrj = φr
′

i + Φr
′

j ,

CSW MMF obtains.
From (15), you cannot distinguish φri from Φrj . On the other hand, you can

test whether φ0
i = Φ0

j .
And from (15),

ln
µMij
µCij

=
(φMi + ΦMj − φCi − ΦCj )

(2− φMi − ΦMj )(2− φCi − ΦCj )

[
(1− φ0

i ) lnµi0 + (1− Φ0
j ) lnµ0j

]
(17)

+
πMij

2− φMi − ΦMj
−

πCij
2− φCi − ΦCj

Since µi0 and µ0j appears on the right hand side of (17), the log odds of the
number of r to r′ relationships will not be independent of the sex ratio.

It is easy to check that under CS, CSW and DM, the log odds of the number
of r to r′ relationships is independent of the sex ratio. Independence is a very
strong assumption and unlikely to hold every two types of relationships. CSPE
relaxes the independence assumption. However because the coefficients on un-
matched men and women have the same sign, this independence is restricted.

We will now study PAM patterns. Let the heterogeneity across males (fe-
males) be one dimensional and ordered. Without loss of generality, let male
(female) ability be increasing in i (j).

Also let:

φ0
i = φ0; Φ0

j = Φ0;φri = φr; Φrj = Φr (18)

that is, the peer effects depend on their gender and the relationship they
pick but not their type or their partner’s type. We call equation (18) type inde-
pendent peer effects. Type independence peer effects leads to type independent
exponents in the Cobb Douglas MMF, a testable restriction.

7Blume, et. al. (forthcoming) has a state of the art survey. Also see Djebbari, et. al.
(2009).
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Then using (15), the local log odds for (r, i, j) is:

l(r, i, j) = ln
µrijµ

r
i+1,j+1

µri+1,jµ
r
i,j+1

=
πrij + πri+1,j+1 − πri+1,j − πri,j+1

2− φr − Φr
(19)

=
ũrij + ṽrij + ũri+1,j+1 + ṽri+1,j+1 − (ũri+1,j + ṽri+1,j)− (ũri,j+1 + ṽri,j+1)

2− φr − Φr

(20)

According to (19), if the marital output function, ũrij + ṽrij , is supermodular
in i and j, then the local log odds, l(r, i, j), are positive for all (i, j), or totally
positive of order 2 (TP2). Statisticians use TP2 as a measure of stochastic pos-
itive assortative matching. Thus even when peer effects are present, we can test
for supermodularity of the marital output function, a cornerstone of Becker’s
theory of positive assortative matching in marriage. This result generalizes Siow
(forthcoming), CSW and Graham (2011).

CSPE MMF is a special case of the Cobb Douglas MMF. We will show the
existence and uniqueness of the marriage matching distribution of the Cobb
Douglas MMF and derive some comparative statics results.

2 The Cobb Douglas MMF

Consider the Cobb Douglas MMF defined by:

ln
µrij

(µi0)α
r
ij (µ0j)

βr
ij

= γrij ∀ (r, i, j) (21)

αrij , β
r
ij ≥ 0

Consistent with the behavioral models, and the fact that γrij can be negative,
we interpret γrij as proportional to the mean gross gains to relationship r minus
the sum of the mean gains to them remaining unmatched for two randomly
chosen (i, j) individuals.

The matching equilibrium in this model is characterized by the Cobb Douglas
MMF (21) and the population constraint equations. Showing the existence of an
equilibrium matching and its uniqueness is not an easy task. The existence and
uniqueness of the equilibrium matching in the CS model has been well studied
by Decker et. al. (2013), and Galichon and Salanié (2012). However, those
two approaches cannot be directly applied to show existence and uniqueness of
equilibrium in this context. To the best of our knowledge, nothing was known
about the existence and the uniqueness of the equilibrium for the Cobb Douglas
MMF. We propose an approach that proves the existence and uniqueness of
this model. This new approach will also serve as an alternative to the existence
and uniqueness proofs proposed by Decker et. al. (2013) and Galichon and
Salanié (2012) for the CS MMF. The details of the complete development of our
approach are derived in Appendix A.
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Following CS, an important simplification in the proof is to first reduce the
2r × I × J system of non-linear equations to an I + J system of the numbers
of unmatched individuals by substituting the Cobb Douglas MMF in equation
(21) into the population constraints, (1) and (2), to get:

Lemma 1

mi = µi0 +

J∑
j=1

µ
αMij
i0 µ

βMij
0j eγ

M
ij +

J∑
j=1

µ
αCij
i0 µ

βCij
0j e

γCij , for 1 ≤ i ≤ I, (22)

fj = µ0j +

I∑
i=1

µ
αMij
i0 µ

βMij
0j eγ

M
ij +

I∑
i=1

µ
αCij
i0 µ

βCij
0j e

γCij , for 1 ≤ j ≤ J. (23)

After we solve for the equilibrium numbers of unmatched individuals, I + J
of them, the equilibrium numbers of 2r × I × J matches can be solved one at
a time using (21).

The following theorem summarizes our results:

Theorem 1 [Existence and Uniqueness of the Equilibrium matching] For every
fixed matrix of relationship gains and coefficients βrij ;α

r
ij ≥ 0, the equilibrium

matching of the Cobb Douglas MMF model exists and is unique.

Remark 1 From an application point of view, the importance of the theorem
is that we can simulate the model by first solving an I + J system of non-linear
equations which has a unique solution rather than an 2r×I×J system. The two
steps approach to solving for the equilibrium matching is highly recommended.
Feedback from users of CS complain about the difficulty of numerically solving
the I × J system without cohabitation in one step.

Notice that using (21),

ln
µrij
µr
′
ij

= (αrij − αr
′

ij) ln(µi0) + (βrij − βr
′

ij ) ln(µ0j) + γrij − γr
′

ij ∀ (r, i, j)

So:

Lemma 2 When (αrij −αr
′

ij) = (βrij −βr
′

ij ) = 0 as in CS, CSW and DM, the log

odd of µrij to µr
′

ij is independent of the sex ratio mi/fj. Otherwise the log odd is
not independent of the sex ratio.

Independence is a very strong assumption and unlikely to hold every two
types of relationships. Arciadiacono, et. al. (2010) shows that independence
does not hold for sexual versus non-sexual boy girl relationships in high schools.
We show here that it does not hold for cohabitation versus marriage. CSPE
and CSFT provide two behavioral models which relaxes independence. Indeed,
whenever (αrij − αr

′

ij) 6= 0 or (βrij − βr
′

ij ) 6= 0, mi/fj affects ln(µrij/µ
r′

ij) through
its impact on the unmatched µi0 and µ0j .
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With multi-market data, βrij and αrij are identified under some mild restric-
tions, as shall be clearer soon. However the fully flexible Cobb Douglas MMF
cannot be estimated precisely with the data which we have. So often, we will
assume that the exponents on the Cobb Douglas MMF are gender and rela-
tionship specific but independent of the types of couples, (i, j): βrij = βr and
αrij = αr.

Type independent exponents is obtained under CSPE when we impose type
independent peer effects:

φ0
i = φ0; Φ0

j = Φ0;φri = φr; Φrj = Φr (24)

With multimarket data, type independent exponents, βrij = βr and αrij =
αr, is in principle a testable relationship. From a practical point of view, the
most flexible model that we estimate in this paper imposes type independent
exponents.8

When we impose type independent exponents, the local log odds, l(r, i, j),
of the Cobb Douglas MMF become:

l(r, i, j) = ln
µrijµ

r
i+1,j+1

µri+1,jµ
r
i,j+1

= γrij + γri+1,j+1 − γri+1,j − γri,j+1

Following the interpretation of the local log odds for CSPE in equation
(19), and all the other behavioral MMFs considered in this paper, we interpret
l(r, i, j) as proportional to the degree of local complementarity of the marital
output function of the couple at (r, i, j).

Comparing this MMF with the above MMFs, CSPE, CS, DM and CSW are
all special cases. It is convenient to summarize the different models and some
of their properties.

Models and restrictions on αr and βr

Model αr βr γrij Restrictions

Cobb Douglas MMF αr βr γrij αr ≥ 0, βr ≥ 0

CS 1
2

1
2 πrij αr = βr = 1

2

DM 1 1 πrij αr = βr = 1

CSW σ
σ+Σ

Σ
σ+Σ

πij

σ+Σ α, β > 0;α+ β = 1

CSPE 1−φ0

2−φr−Φ
1−Φ0

2−φr−Φr

πr
ij

2−φr−Φr αr, βr ≥ 0, α
M

αC
= βM

βC

In particular, from (15), CSPE implies:

αr

αr′
=

βr

βr′

which is a testable restriction.
Since different cases of the Cobb Douglas MMF imply the presence of scale

effects or otherwise, we provide a restriction for scale effects. Then:

8We estimated the fully flexible CSPE model but the point estimates on the unmatched
interacted with the type of the match were too imprecisely estimated to be useful.
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Proposition 2 (Constant return to scale) The equilibrium matching dis-
tribution of the Cobb Douglas MMF model satisfies the Constant return to scale
property if βr + αr = 1 i.e.

βr + αr = 1 for r ∈ {M, C} ⇒
I∑
i=1

∂µ

∂mi
mi +

J∑
j=1

∂µ

∂fj
fj = µ.

The result claims that the Cobb Douglas MMF model exhibits constant
results to scale if βr + αr = 1, meaning that, holding the type distributions of
men and women fixed, increasing market size has no effect on the probability
of forming relationship r. The proposition generalizes to βrij + αrij = 1 for all
(r, i, j) implies constant returns to scale.

Remark 2 A caution on testing for increasing or decreasing returns to scale:
Unlike standard Cobb Douglas, so far we have been unable to show that βr +
αr > 1 and βr + αr < 1 implies increasing and decreasing returns to scale
respectively.9

We can provide other comparative statics results for the Cobb Douglas MMF
model. To derive the different comparative statics, we generalize the Graham
(2013) approach and then show the following results:

Theorem 2 Let µ be the equilibrium matching distribution of the Cobb Douglas
MMF model. If the coefficients βr and αr respect the restrictions

1. 0 < βr;αr ≤ 1 for r ∈ {M, C};

2. max(βC − αC , βM − αM) < mini∈I

(
1−ρmi
ρmi

)
;

3. min(βC − αC , βM − αM) > −maxj∈J

(
1−ρfj
ρfj

)
;

where ρmi is the rate of matched men of type i and ρfj is the rate of matched
women of type j, then the following inequalities hold in the neighbourhood of
µeq:

1. Type-specific elasticities of unmatched.

(a) mi

µk0

∂µk0

∂mi
≥


1
m∗i

mk

m∗k

∑J
j=1

[αMµMkj +αCµCkj ][βMµMkj +βCµCkj ]

f∗j
> 0 if k 6= i

mi

m∗i
[1 + 1

m∗i

∑J
j=1

[αMµMij +αCµCij ][βMµMij +βCµCij ]

f∗j
] > 1 if k = i,

1 ≤ k ≤ I.

9We have investigated two definitions of increasing returns: (1) The unmatched rates for
men and women must fall by more than proportional to the increase in population supplies.
(2) The unmatched rates for all types of individuals must fall by more than proportional to
the increase in population supplies.
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(b)
fj
µ0k

∂µ0k

∂fj
≥


1
f∗j

fk
f∗k

∑I
i=1

[αMµMik +αCµCik][βMµMik +βCµCik]
m∗i

> 0 if k 6= j

fj
f∗j

[1 + 1
f∗j

∑I
i=1

[αMµMij +αCµCij ][βMµMij +βCµCij ]

m∗i
] > 1 if k = j,

1 ≤ k ≤ J ,

(c)

mi

µ0j

∂µ0j

∂mi
≤ −

[αMµMij + αCµCij ]

m∗i f
∗
j

mi < 0, for 1 ≤ i ≤ I and 1 ≤ j ≤ J,

(d)

fj
µi0

∂µi0
∂fj

≤ −
[βMµMij + βCµCij ]

m∗i f
∗
j

fj < 0, for 1 ≤ i ≤ I and 1 ≤ j ≤ J,

2. Variation of the log ratio ln
µMij
µCij

:

If αM > αC and βC > βM we have

(a) 1
∂mi

[ln
µMkj

µCkj

] ≥



αM−αC
m∗imi

mk

m∗k

∑J
j=1

[αMµMkj +αCµCkj ][βMµMkj +βCµCkj ]

f∗j

+(βM − βC) [αMµMij +αCµCij ]

m∗i f
∗
j

> 0 if k 6= i

αM−αC
m∗i

[
1 + 1

m∗i

∑J
j=1

[αMµMij +αCµCij ][βMµMij +βCµCij ]

f∗j

]
+(βM − βC) [αMµMij +αCµCij ]

m∗i f
∗
j

> αM − αC if k = i,

1 ≤ k ≤ I

(b) 1
∂fj

[ln
µMik
µCik

] ≤



βM−βC
f∗j fj

fk
f∗k

∑I
i=1

[αMµMik +αCµCik][βMµMik +βCµCik]
m∗i

−(αM − αC) [βMµMij +βCµCij ]

m∗i f
∗
j

< 0 if k 6= j

βM−βC
f∗j

[1 + 1
f∗j

∑I
i=1

[αMµMij +αCµCij ][βMµMij +βCµCij ]

m∗i
]

−(αM − αC) [βMµMij +βCµCij ]

m∗i f
∗
j

fj < −(αM − αC) if k = j,

1 ≤ k ≤ J

where

m∗i ≡ mi −
J∑
j=1

[(1− αM)µMij + (1− αC)µCij ], for 1 ≤ i ≤ I,

f∗j ≡ fj −
I∑
i=1

[(1− βM)µMij + (1− βC)µCij ], for 1 ≤ j ≤ J.

Results 1a and 1b say that the unmatched rate for any type of individual is
increasing in the supply of any type of individual of the same gender. Results 1c
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and 1d say that the unmatched rate for any type of individual is decreasing in the
supply of any type of individual of the opposite gender. Result 2 provides some
comparative statics on the log odds of the number of marriages to cohabitations
with respect to changes in population supplies.

The above results generalize Theorem 2 of Decker et. al. (2012), and the
case i) of Theorem 1 of Graham (2013). It is worth noting that the restriction
imposed on βr and αr are only necessary and would be very mild depending on
the model. For instance, those restrictions directly holds for the CS and DM
model; Graham (2013) shows that those restrictions are not necessary to derive
the comparative statistics in the CSW model; for the CSFT model Mourifié and
Siow (in process) show that this restriction only avoid to have simultaneously
high friction coefficients and marriage rates. This is reasonable since having
high level of friction coefficients in the CSFT model decreases matching rates.
Moreover, since we will show that the coefficient βr and αr could be estimated,
those restrictions are therefore testable.

3 Identification and estimation

Consider the general Cobb Douglas MMF in presence of multi market data:

lnµrstij = αrij lnµsti0 + βrij lnµst0j + γrstij . (25)

As discussed in the introduction, although equation (25) is in the Cobb
Douglas form, it is not a production function relationship. Rather, it is a set of
equilibrium relationships which defines the MMF. This section provides flexible
specifications which are identified and can be estimated using a difference in
differences instrumental variables methodology.

Even with multimarket data, the most general Cobb Douglas MMF is not
identified. There are 2 × I × J × S × T elements in the observed matching
distribution (i.e. µrstij ) and there are 2× I × J × S × T + 4× I × J parameters
i.e. (γrstij , αrij , and βrij). Therefore, to obtain identification of the general Cobb
Douglas MMF we will impose additional mild restrictions on the structure of
the gains i.e. γrstij .

Assumption 1 Let:

1. (Additive separability of the gain). γrstij = πrij + ηrsij + ζrtij + εrstij where πrij
represents the type fixed effect, ηrsij the state fixed effect, ζrtij the time fixed
effect, and εrstij the residual terms.

2. (Instrumental Variable (IV)). E[εrstij |z11
ij , ..., z

ST
ij ] = 0, where zstij = (mst

i , f
st
j )′.

Assumption 1 (1) decomposes γrstij into match type fixed effect, state fixed
effect and time fixed effect, and the error term of the regression, εrstij . When εrstij
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increases, the gain to the match increases which will increase µrstij and therefore
likely reduces µrsti0 and µrst0j . Thus µrsti0 and µrst0j and the error term εrstij are
likely negatively correlated. So in general, using OLS to estimate equation (25)
is inconsistent.

Assumption 1 (2) allows us to use the population supplies, mst
i and fstj , as

instruments for µrsti0 and µrst0j . The assumption says that the population supplies
must be orthogonal to εrstij .

Under Assumption 1 (1), first let subtract from equation (25) the time-
averaged model lnµrsij = αrij lnµ

s
i0 + βrij lnµ

s
0j + πrij + ηrsij + ζ

r

ij + εrsij . Then,

lnµrstij −lnµrsij = αrij [lnµ
st
i0−lnµsi0]+βrij [lnµ

st
0j−lnµs0j ]+ζ

rt
ij −ζ

r

ij+ε
rst
ij −εrsij . (26)

Second, subtract from equation (26) the state-averaged model of equation

(26) lnµrtij − lnµrij = αrij [lnµ
t
i0 − lnµi0] + βrij [lnµ

t
0j − lnµ0j ] + ζrtij − ζ

r

ij + εrtij − ε
r
ij

We have then,

ỹrstij = x̃stij
′
λ̃rij + ε̃rstij (27)

where ỹrstij ≡ lnµrstij − lnµrsij − lnµrtij + lnµi0, x̃stij ≡ (lnµsti0 − lnµsi0 − lnµti0 +

lnµi0, lnµ
st
0j − lnµs0j − lnµt0j + lnµ0j)

′, λ̃rij ≡ (αrij , β
r
ij)
′, and ε̃rstij ≡ [εrstij − εrsij ]−

[εrtij − ε
r
ij ].

Since µsti0 and µst0j are potentially correlated with the residual terms εrstij a

simple ordinary least square (OLS) will not be able to identify λ̃rij . Therefore,

we will instrument µsti0 and µst0j respectively with mst
i and fstj . Notice that to

be a valid instrument µsti0 and µst0j should be respectively correlated with µsti0
and µst0j and respect the exogeneity condition summarizes in Assumption 1 (2).
As can be seen in Theorem 2, the comparative statics show the correlation

between mst
i and fstj and the unmatched. Therefore, λ̃rij can be identify using

the IV estimand if E[zstij x̃
st
ij

′
] is of full column rank. The identification result is

summarized in the following proposition.

Proposition 3 Under Assumption 1, the general Cobb Douglas MMF is iden-

tified if E[zstij x̃
st
ij

′
] is of full column rank. The identification equation is given by

λ̃rij = {E[zstij x̃
st
ij

′
]}−1E[zstij ỹ

rst
ij ].

We have a few comments. First, whenever λ̃rij is identified, we can identify

the gain matrix γrstij using equation (25). Second, this model can also be esti-
mated using the generalized method of moments (GMM). Third, whenever the
numbers of state S and period T are not high, we do not need to do the double
differentiation. We can use a sequence of state and time dummies fixed-effects.

4 Empirical results

We study the marriage matching behavior of 26-30 years old women and 28-32
years old men with each other in the US for 1990, 2000 and 2010.
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The 1990 and 2000 data is from the 5% US census. The 2010 data is from
aggregating three years of the 1% American Community Survey from 2008-2010.
A state year is considered as an isolated marriage market. There were 51 states
which includes DC. Individuals are distinguished by their schooling level: less
than high school (L), high school graduate (M) and university graduate (H).

A cohabitating couple is one where a respondent answered that they are the
“unmarried partner” of the head of the household.

An observation in the dataset is the number of (r, i, j) relationships in a
state year. Since there are three types of men and three types of women, there
are potentially 9 types of matches for each type of relationship, marriage versus
cohabitation.

Table 1 in Appendix C provides some summary statistics.
There are 1113 and 1283 non-zero number of cohabitations and marriages

respectively. There are close to an average of 50,000 males and females of each
type. The number of unmatched individuals exclude individuals whose partners
are not in the (r, i, j) matches considered here. For example, if a woman has a
husband older than 32, she will be counted in the number of females with her
educational level and excluded in the count of the unmatched. There are close
to an average of 20,000 unmatched individuals of each type. The educational
distributions by types and year are in Figure 2.

Due the small numbers of cohabitations for some observations, we reduce
the effect of sampling error on our estimates by doing weighted regressions.10

Table 2 presents estimates of equation (3) by OLS. Although the OLS esti-
mates are inconsistent, the estimates anticipate what we will find by IV. The
smallest model, model 1, is in columns (1a) and (1b) where γsrtij = γr. The CS

model, where αr = βr = 1
2 , cannot be rejected in column 1a at the 5% signifi-

cance level. But there is already evidence against the CS model in column 1b
for the estimated coefficient on the unmatched females. We can also reject the
hypothesis of constant return to scale (CRS), α+ β = 1, in column 1b.

Model 2, in columns (2a) and (2b) add unrestricted year and match effects.
The estimated year effects show that compared with 1990, the gains to cohab-
itation increased in 2000 and again in 2010, whereas the gains to marriage fell
in 2000 and again in 2010.

Since the estimates of the match effects are difficult to interpret, we present
instead the local log odds, equation (19). With three types of individuals by
gender, there are four local log odds. In columns (2a) and (2b), all the local
log odds are significantly positive. Thus there is strong evidence for PAM by
educational attainment in both cohabitation and marriage. In fact PAM is
present in both cohabitation and marriage in all our empirical models. There
is mild evidence against CRS in columns (2a) and (2b).

Model 3, in columns (3a) and (3b) add state effects to the covariates. In
model 1, the R2s are in the 0.5 range. The R2s increase to 0.9 by adding match
and year effects in model 2. The R2s increase to 0.92 and 0.97 in columns (3a)
and (3b) respectively with the addition of state effects. As a descriptive model

10Each observation is weighted by the average of mst
i and fstj .
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of marital behavior by state and year, the Cobb Douglas MMF is a very good
summary of the data for these individuals.

The estimated coefficients on the unmatched increased significantly in model
3 compared with the estimates in model 1 consistent with our hypothesis that
the error terms in model 1 are primarily gains to relationships effects. Since
the gain to a relationship is negatively correlated with the unmatched, the
estimates in model 1 are biased down relative to model 3. In model 3, CRS is
easily rejected.

The test of CSPE, that αM

βM
βC

αC
= 1, is in the second last row of the table.

CSPE cannot be rejected in all three models. And in model 3, the point estimate

of α
M

βM
βC

αC
is essentially 1. As will also be the cases later, there will be no evidence

against CSPE in the model with match, state and year effects by either OLS or
IV.

Except for column (1a), the estimate of α
β is smaller than one which means

that the peer effect coefficient for unmatched females, Φ0, is smaller than the
peer coefficient for unmatched males, φ0. Put another way, compared with
men, women’s utilities as unmatched are less affected by their peers choosing to
remain unmatched.

Finally in the last row of the Table 2, using lemma 2, we present the p-value
for testing independence of the log odds of cohabitation versus marriage with
respect to the sex ratio. Independence is not rejected at the 5% significance
level in models 1 and 3. It is rejected in model 2. As will be shown later, these
conclusions are not robust to IV estimation.

Table 3 presents IV estimates where the instruments for the unmatched,
µrsti0 and µrst0j , are the population supplies mrst

i and frstj . Since the error terms
in the regressions represent the gains to a relationship and thus are negatively
correlated with the number of unmatched, we expect the IV estimates to be
larger than their OLS counterparts. Compared with their OLS counterparts,
the IV estimates of the coefficients of the unmatched are marginally larger.
They are significantly larger for model 3.

The IV estimates of the local log odds and year effects are similar to their
OLS counterparts. This should not be surprising. The R2s for the first stage
regressions of the unmatched on population supplies exceed 0.95. Because the
IV estimates for the unmatched are larger than the OLS estimates, the IV
estimates of the constant term is smaller than their OLS counterparts.

Similar to the OLS estimates, the IV estimates for model 3 fits well. In-
terestingly, the estimates for α+ β is close to 2 in column (3b), presenting the
most suggestive evidence for the DM MMF although we can reject α = 1 or
β = 1. The estimates for cohabitation in column (3a) is less compelling for DM.
Still, there is significant evidence for both peer and scale effects in marriage
matching.

There is no evidence against CSPE. In particular in model 3, the point

estimate for αM

βM
βC

αC
is again essentially 1 and the standard error is small.

The one big difference in the IV estimates compared with the OLS estimates
is the test of independence of the log odds of cohabitation versus marriage with
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respect to the sex ratio. For all three models in Table 3, independence is rejected
at lower than the 1% significance level.

Table 4 presents IV estimates where we allow the marriage matching patterns
to change over time. Model 1, in columns 1a and 1b, includes time varying
match effects and year effects. Model 2, in columns 2a and 2b, add state effects.
Unsurprisingly, based on estimates of the local log odds in 1990, PAM remains
strong and significant. There is little evidence for systematic changes in the local
log odds in 2000, 10 years later. There is more evidence for an increase in PAM
along the main diagonal in cohabitation in 2010, 20 years later. There is also
evidence of an increase in PAM in marriage between high school graduates and
less than high school graduates. In general, except for a mild increase in PAM
among cohabitants, there is little change in the degree of complementarity of the
relationship output functions between 1990 and 2010. The stability in marriage
matching pattern was anticipated in CSW and Siow. This is in strong contrast
to a loss of the gains to marriage and an increase in the gains to cohabitation
over the same period.

Again, there is little evidence against CSPE.
Finally, independence is rejected around the 5% significance level for model

2 and less than 1% for model 3.
In summary, model 3 in Table 3, where gains to a relationship is captured

by match, state and year effects, provides a reasonable summary of marital
behavior for the individuals under study. Moreover, to a first order the match
effects have not changed significantly over the period of study. There is a second
order increase in PAM for cohabitants. Thus analysts can focus on studying
mechanisms which affected state and year effects to the gains in relationships
relative to remaining unmatched. As anticipated by Fernandez-Villaverde, et.
al., Adamopoulou and Drewianka, peer and scale effects in the marriage market
are empirically important. Finally, independence of the log odds of the number
of marriages to cohabitation with respect to the sex ratio is rejected.

5 Conclusion

This paper presented an easy to estimate and simulate MMF, the Cobb Douglas
MMF. Several behavioral MMFs are special cases including CSPE. Empirically,
we shows that peer and scale effects are quantitatively important. Independence
of the log odds of the number of marriages to cohabitation with respect to the
sex ratio is rejected. We also show that changes in marital matching behavior
over this period are best explained by mechanisms which explain year and state
effects in the gains to relationships relative to remaining unmatched.

And as we discussed in the introduction, although we are partial to CSPE
and it is not rejected empirically, it should be clear that we propose the Cobb
Douglas MMF precisely because we do not want to insist on a particular behav-
ioral model of the marriage market.

In order to keep the paper within a reasonable length, our empirical study
focused on a small subset of the marriageable population. Estimating the model
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on a larger subset of the population is an important agenda for future research.
Also using the model to study particular mechanisms for marital change is
another important topic for future research.

From an analytic perspective, we are working on sufficient conditions for
characterizing increasing and/or decreasing returns to scale. It will also be
useful to study other behavioral models which allow for more varied relationships
between the log odds of the number of marriages to cohabitation and changes
in the sex ratio.
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A Existence and Uniqueness of the Matching
Equilibrium

To ease the notation, denote M ≡ a and C ≡ b in the rest of the paper. The
matching equilibrium in this model is characterized by the Cobb Douglas MMF
(21) and the population constraint equations

J∑
j=1

µaij +

J∑
j=1

µbij + µi0 = mi, 1 ≤ i ≤ I (28)

I∑
i=1

µaij +

I∑
i=1

µbij + µ0j = fj , 1 ≤ j ≤ J (29)

µ0j , µi0 ≥ 0, 1 ≤ j ≤ J, 1 ≤ i ≤ I.

Let m ≡ (m1, ...,mI)
′, f ≡ (f1, ..., fJ)′, µ ≡ (µ10, ..., µI0, µ01, ..., µ0J)′, γr ≡

(γr11, ..., γ
r
1I , ..., γ

r
I1, ..., γ

r
IJ)′ for r ∈ {a, b}, βr ≡ (βr11, ..., β

r
1I , ..., β

r
I1, ..., β

r
IJ)′,

αr ≡ (αr11, ..., α
r
1I , ..., α

r
I1, ..., α

r
IJ)′ β ≡ ((βa)′, (βb)′)′, α ≡ ((αa)′, (αb)′)′ and

θ ≡ ((γa)′, (γb)′, α′, β′)′. Let Γ be a closed and bounded subset of R2IJ such
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that θ ∈ Γ× (0,∞)2. Equation (21) can be written as follows:

µrij = µ
αr

ij

i0 µ
βr
ij

0j e
γr
ij for r ∈ {a, b}. (30)

Now, let consider the following mapping g : (R∗+)I+J → (R∗+)I+J

gi(µ; θ) = µi0 +

J∑
j=1

µ
αa

ij

i0 µ
βa
ij

0j e
γa
ij +

J∑
j=1

µ
αb

ij

i0 µ
βb
ij

0j e
γb
ij , for 1 ≤ i ≤ I, (31)

gj+I(µ; θ) = µ0j +

I∑
i=1

µ
αa

ij

i0 µ
βa
ij

0j e
γa
ij +

I∑
i=1

µ
αb

ij

i0 µ
βb
ij

0j e
γb
ij , for 1 ≤ j ≤ J. (32)

This mapping is obtained by just rewriting the left side of the population con-
straints with the Cobb Douglas MMF. We show later in Section A.1 that for
every θ ∈ Γ× (0,∞)2 g is a proper mapping11 and that the Jacobian of g(µ; θ)
(i.e. Jg(µ; θ)) does not vanish for all µ in (R∗+)I+J . Thus, we can invoke
Hadamard’s theorem 12 (see Krantz and Park (2003, Theorem 6.2.8 p 126)),
which tells us that g is an homeomorphism i.e. (one-to-one mapping) whenever
the latter two properties of g hold. Then, for every θ ∈ Γ× (0,∞)2 and for all
m > 0 and f > 0 the system of equations

µi0 +

J∑
j=1

µ
αa

ij

i0 µ
βa
ij

0j e
γa
ij +

J∑
j=1

µ
αb

ij

i0 µ
βb
ij

0j e
γb
ij = mi, for 1 ≤ i ≤ I (33)

µ0j +

I∑
i=1

µ
αa

ij

i0 µ
βa
ij

0j e
γa
ij +

I∑
i=1

µ
αb

ij

i0 µ
βb
ij

0j e
γb
ij = fj , for 1 ≤ j ≤ J. (34)

admit a unique solution 0 < µ < (m′, f ′)′. Therefore the equilibrium matching
of the Cobb Douglas MMF model exists and is unique. The following theorem
summarizes our discussion:

A.1 Proof of Theorem 1

Proof. Consider the following continuously differentiable function g : (R∗+)I+J →
(R∗+)I+J

gi(µ) = µi0 +

J∑
j=1

µ
αa

ij

i0 µ
βa
ij

0j e
γa
ij +

J∑
j=1

µ
αb

ij

i0 µ
βb
ij

0j e
γb
ij , (35)

gj+I(µ) = µ0j +

I∑
i=1

µ
αa

ij

i0 µ
βa
ij

0j e
γa
ij +

I∑
i=1

µ
αb

ij

i0 µ
βb
ij

0j e
γb
ij . (36)

11A continuous function between topological spaces is called proper if the inverse images of
compact subsets are compact.

12We thank Marcin Peski for pointing to us out this Hadamard’s result.
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Notice that,

µ
αr

ij

i0 µ
βr
ij

0j e
γr
ij = eα

r
ij lnµi0+βr

ij lnµ0j+γr
ij ,

≡ eδ
r
ij .

Therefore, the mapping g(µ) can be written equivalently as follows:

gi(µ) = µi0 +

J∑
j=1

eδ
a
ij +

J∑
j=1

eδ
b
ij , (37)

gj+I(µ) = µ0j +

I∑
i=1

eδ
a
ij +

I∑
i=1

eδ
b
ij . (38)

Let Jg(µ) be the Jacobian of g. After a simple derivation we can show that
Jg(µ) takes the following form:

Jg(µ) =

(
(Jg)11(µ) (Jg)12(µ)
(Jg)21(µ) (Jg)22(µ)

)
with

(Jg)11(µ) =


1 +

∑J
j=1

[
αa

1j

µ10
eδ

a
1j +

αb
1j

µ10
eδ

b
1j

]
· · · 0

...
. . .

...

0 · · · 1 +
∑J
j=1

[
αa

Ij

µI0
eδ

a
Ij +

αb
Ij

µI0
eδ

b
Ij

]
,

(Jg)12(µ) =


βa
11

µ01
eδ

a
11 +

βb
11

µ01
eδ

b
11 · · · βa

1J

µ0J
eδ

a
1J +

βb
1J

µ0J
eδ

b
1J

...
. . .

...
βa
I1

µ01
eδ

a
I1 +

βb
I1

µ01
eδ

b
I1 · · · βa

IJ

µ0J
eδ

a
IJ +

βb
IJ

µ0J
eδ

b
IJ

,

(Jg)21(µ) =


αa

11

µ10
eδ

a
11 +

αb
11

µ10
eδ

b
11 · · · αa

I1

µI0
eδ

a
I1 +

αb
I1

µI0
eδ

b
I1

...
. . .

...
αa

1J

µ10
eδ

a
1J +

αb
1J

µ10
eδ

b
1J · · · αa

IJ

µI0
eδ

a
IJ +

αb
IJ

µI0
eδ

b
IJ

,

(Jg)22(µ) =


1 +

∑I
i=1

[
βa
i1

µ01
eδ

a
i1 +

βb
i1

µ01
eδ

b
i1

]
· · · 0

...
. . .

...

0 · · · 1 +
∑I
i=1

[
βa
iJ

µ0J
eδ

a
iJ +

βb
iJ

µ0J
eδ

b
iJ

]
.

.

Claim 3 The Jacobian Jg(µ) does not vanish for all µ in (R∗+)I+J .

Proof. Jg(µ) is a column diagonally dominant matrix or diagonally dominant
in the sense of McKenzie (1960) and therefore Jg(µ), for all µ > 0, is a non-
singular matrix. See McKenzie (1960, p 47-50) for more details on this result.
Indeed, let us denote every element of Jg(µ), bk,l with 1 ≤ k, l ≤ I + J . Jg(µ)
is diagonally dominant in the sense of McKenzie (1960) if there exist numbers

dl > 0 such that dl|bll| >
∑I+J
k 6=l dk|bkl| for l = 1, ..., I + J . Here, it is sufficient
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to take dl = 1 for 1 ≤ l ≤ I+J . Indeed, if you take one element in the diagonal
of the matrix (Jg)11(µ), it can be seen that this element is greater than the
summation of all elements in the same column of the matrix (Jg)21(µ).

Claim 4 (R∗+)I+J is a smooth manifold and simply connected.

Claim 5 g is proper.

Proof.

Definition 6 Let X, Y be topological spaces and g: X→ Y be a mapping. g is
said to be proper if whenever K ⊆ Y is compact then g−1(K) ⊆ X is compact.

Krantz and Park (2003, p 125) pointed out the following lemma that gives more
operational criteria for checking if a mapping is proper.

Lemma 3 Let U and V be connected open sets in RI+J , g: U → V is a proper
mapping if and only if whenever {xj} ⊆ U satisfies xj → ∂U then g(xj)→ ∂V .

Notice that ∂V is used for the boundary of set V . Therefore, the following result
completes the proof; define µ = (0, ..., 0, 0, ..., 0)′ and
µ = (+∞, ...,+∞,+∞, ...,+∞)′. We can easily show that limµ→µg(µ) =

(0, ..., 0, 0, ..., 0)′ and limµ→µg(µ) = (+∞, ...,+∞,+∞, ...,+∞)′. After pre-
senting the previous claims, we can now invoke Hadamard’s theorem as stated
in Krantz and Park (2003, Theroem 6.2.8 p 126). This theorem ensures that
g is an homeomorphism. Moreover, it is easy to see that the solution µeq of
system of equations (33) satisfies the restriction 0 < µeq < (m′, f ′)′. Notice
that the existence of at least an equilibrium can be shown using Brouwer’s fixed
point theorem. Indeed, this can be done using a fixed point representation of
the equilibrium of the Cobb Douglas MMF as we have done in the proof of the
comparative statistics result. This completes our proof.

B Comparative Statistics

B.1 Fixed point representation of the equilibrium of the
Cobb Douglas MMF

After rearranging equation (30) we have four equalities that holds for all (i, j)
pairs:

µrij
µi0

= exp
[
γrij + (αr − 1) lnµi0 + βr lnµ0j

]
≡ ηrij for r ∈ {a, b}, (39)

µrij
µ0j

= exp
[
γrij + αr lnµi0 + (βr − 1) lnµ0j

]
≡ ζrij for r ∈ {a, b}. (40)
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Using equations (39) and (40) we have:

J∑
j=1

µaij +

J∑
j=1

µbij = µi0

J∑
j=1

[
ηaij + ηbij

]
, 1 ≤ i ≤ I,

I∑
i=1

µaij +

I∑
i=1

µbij = µ0j

I∑
i=1

[
ζaij + ζbij

]
, 1 ≤ j ≤ J.

Manipulating the population constraints (28), (29) we have the following:

µi0 =
mi

1 +
∑J
j=1

[
ηaij + ηbij

] ≡ Bi0, 1 ≤ i ≤ I (41)

µ0j =
fj

1 +
∑I
i=1

[
ζaij + ζbij

] ≡ B0j , 1 ≤ j ≤ J. (42)

Let B(µ;m, f, θ) ≡ (B10(.), ..., BI0(.), B01(.), ..., B0J(.))′. For a fixed θ we have
shown that the (I+J) vector µ of the number of agents of each type who choose
not to match is a solution to (I + J) vector of implicit functions

µ−B(µ;m, f, θ) = 0. (43)

Let Tε = {ε ≤ µ10 ≤ m1, ..., ε ≤ µI0 ≤ mI , ε ≤ µ01 ≤ f1, ..., ε ≤ µ0J ≤ fJ} be
a closed and bounded rectangular region in RI+J with ε some arbitrarily small
positive constant. We know from Theorem 1 that the fixed point representation
has a unique solution µeq > 0. We can verify that µeq ∈ Tε. Now, let J(µ) =

II+J−5µB(µ;m, f, θ) with5µB(µ;m, f, θ) = ∂B(µ;m,f,θ)
∂µ′ be the (I+J)×(I+J)

Jacobian matrix associated with (44). For a fixed θ we have shown that the
(I + J) vector µ of the number of agents of each type who choose not to match
is a solution to (I + J) vector of implicit functions

µ−B(µ;m, f, θ) = 0. (44)

B.2 Proof of Theorem 2

All derivation in this section will be done at the matching equilibrium µeq. How-
ever, to ease notation we will use the notation µ.
Proof.
Step 0: Derivation of the J(µ) matrix.
To ease the notation, in the following we will use B(µ) to denote B(µ;m, f, θ)
whenever no confusion is possible.
J(µ) = II+J −5µB(µ). After tedious but simple manipulations we can show
that

5µB(µ) =

(
E11(µ) E12(µ)
E21(µ) E22(µ)

)
with
E11(µ) = diag

{∑J
j=1 ej|1(µ), ...,

∑J
j=1 ej|I(µ)

}
,
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E22(µ) = diag
{∑I

i=1 gi|1(µ), ...,
∑I
i=1 gi|J(µ)

}
where

ej|i = mi

µi0

[
(1−αa)ηaij+(1−αb)ηbij(

1+
∑J

j=1[ηaij+ηbij ]

)2

]
, gi|j =

fj
µ0j

[
(1−βa)ζaij+(1−βb)ζbij(

1+
∑I

i=1[ζaij+ζbij ]

)2

]
.

E12(µ) = −


µ10

µ01
ê1|1 · · · µ10

µ0J
êJ|1

...
. . .

...
µI0

µ01
ê1|I · · · µI0

µ0J
êJ|I

, E21(µ) = −


µ01

µ10
ĝ1|1 · · · µ01

µI0
ĝI|1

...
. . .

...
µ0J

µ10
ĝ1|J · · · µ0J

µI0
ĝI|J


where

êj|i = mi

µ0j

[
βaηaij+βbηbij(

1+
∑J

j=1[ηaij+ηaij ]

)2

]
, ĝi|j =

fj
µi0

[
αaζaij+αbζbij(

1+
∑I

i=1[ζaij+ζbij ]

)2

]
.

Now, it is important to remark that at the equilibrium when (44) holds, we
get simplified versions of ej|i, gi|j , êj|i, and ĝi|j which are the following:

ej|i =
(1−αa)ηaij+(1−αb)ηbij

1+
∑J

j=1[ηaij+ηbij ]
= 1

mi
[(1− αa)µaij + (1− αb)µbij ];

gj|i =
(1−βa)ζaij+(1−βb)ζbij

1+
∑I

i=1[ζaij+ζbij ]
= 1

fj
[(1− βa)µaij + (1− βb)µbij ];

êj|i =
βaηaij+βbηbij

1+
∑J

j=1[ηaij+ηbij ]
= 1

mi
[βaµaij + βbµbij ];

ĝj|i =
αaζaij+αbζbij

1+
∑I

i=1[ζaij+ζbij ]
= 1

fj
[αaµaij + αbµbij ];

An appropriate adaptation of the supplement calculation of Graham (2013) (not
published) would help the reader to understand some details of the calculations,

that we have done here. Note that 0 <
∑J
j=1 ej|i(µ) < 1, for all 1 ≤ i ≤ I, and

0 <
∑I
i=1 gi|j(µ) < 1 for all 1 ≤ j ≤ J whenever 0 < βr < 1 and 0 < αr < 1 for

r ∈ {a, b}. Now, we can write J(µ) at the equilibrium. We have the following:

J(µ) =

(
J11(µ) J12(µ)
J21(µ) J22(µ)

)
where J11(µ) = I{I} − E11(µ), J22(µ) = I{J} − E22(µ), J12(µ) = −E12(µ),
J21(µ) = −E21(µ)
Step 1: Factorization of the J(µ) matrix

Recall J(µ) =

(
J11(µ) J12(µ)
J21(µ) J22(µ)

)
, where

J12(µ) = diag(m)−1

{
βa


µ10

µ01
µa11 · · · µ10

µ0J
µa1J

...
. . .

...
µI0

µ01
µaI1 · · · µI0

µ0J
µaIJ

+βb


µ10

µ01
µb11 · · · µ10

µ0J
µb1J

...
. . .

...
µI0

µ01
µbI1 · · · µI0

µ0J
µbIJ

}
Define diag(µ·0) = diag(µ10, ..., µI0), diag(µ0·) = diag(µ01, ..., µ0J) and Rr =µ

r
11 · · · µr1J
...

. . .
...

µrI1 · · · µrIJ

 Therefore,

J12(µ) = diag(µ.0)diag(m)−1[βaRa + βbRb]diag(µ0.)
−1

Similarly, we can show that J21(µ) can be factored as follows:

J21(µ) = diag(µ0.)diag(f)−1[αa(Ra)′ + αb(Rb)′]diag(µ.0)−1

28



We also factor also J11(µ) and J22(µ) as follows:

J11(µ) = II − diag(m)−1[(1− αa)RaιJ + (1− αa)RbιJ ],

J22(µ) = IJ − diag(f)−1[(1− βa)(Ra)′ιI + (1− βb)(Rb)′ιI ].

where RrιJ = (
∑J
j=1 µ

r
1j , ...,

∑J
j=1 µ

r
Ij)
′ and (Rr)ιI = (

∑I
i=1 µ

r
i1, ...,

∑I
i=1 µ

r
iJ).

After rearranging we can show that:

J(µ) = C(µ)−1[A(µ) + U(µ)B0(µ)U(µ)−1]

where

C(µ) =

(
diag(m) 0

0 diag(f)

)
A(µ) =

(
diag(m− (1− αa)RaιJ − (1− αb)RbιJ) 0

0 diag(f − (1− βa)(Ra)′ιI − (1− βb)(Rb)′ιI)

)
U(µ) =

(
diag(µ.0) 0

0 diag(µ0.)

)
B0(µ) =

(
0 βaRa + βbRb

αa(Ra)′ + αb(Rb)′ 0)

)
.

Therefore, J(µ) can be equivalently rewritten as:

J(µ) = U(µ)C(µ)−1[A(µ) +B0(µ)]U(µ)−1

= U(µ)H(µ)U(µ)−1

where
H(µ) = C(µ)−1[A(µ) +B0(µ)].

Let us write H(µ) in detail:

H(µ) =

(
H11(µ) H12(µ)
H21(µ) H22(µ)

)
with

H11(µ) =


1−

∑J
j=1[(1−αa)µa

1j+(1−αb)µb
1j ]

m1
· · · 0

...
. . .

...

0 · · · 1−
∑J

j=1[(1−αa)µa
Ij+(1−αb)µb

Ij ]

mI

,

H12(µ) =


βaµa

11+βbµb
11

m1
· · · βaµa

1J+βbµb
1J

m1

...
. . .

...
βaµa

I1+βbµb
I1

mI
· · · βaµa

IJ+βbµb
IJ

mI

, H21(µ) =


αaµa

11+αbµb
11

f1
· · · αaµa

I1+αbµb
I1

f1
...

. . .
...

αaµa
1J+αbµb

1J

fJ
· · · αaµa

IJ+αbµb
IJ

fJ

,

H22(µ) =


1−

∑I
i=1[(1−βa)µa

i1+(1−βb)µb
i1]

f1
· · · 0

...
. . .

...

0 · · · 1−
∑I

i=1[(1−βa)µa
iJ+(1−βb)µαbbiJ ]

fJ

.

Similar to Graham (2013, p 16), we observe that all elements of H(µ) are non-
negative whenever 0 < βr;αr ≤ 1.
Step 2: Derivation of M-matrix property
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The main goal of this step is to show that the Schur complements of H(µ)
the upper I × I (H11) and lower J × J (H22) diagonal blocks, (i.e. SH11 =
H22 −H21H

−1
11 H12 and SH22 = H11 −H12H

−1
22 H21) are M-matrices which im-

plies SH−1
11 = 0 and SH−1

22 = 0. To show that, we first need to show that
H(µ) is row diagonally dominant. In other terms, if we denote the element
of H(µ), hij with 1 ≤ i, j ≤ I + J we need to show that there exist di > 0

such that di|hii| >
∑I+J
j 6=i dj |hij |. This will be difficult to show without further

restrictions on βr and αr. Graham (2013, p15) showed this result in the partic-
ular case where the two following restrictions hold simultaneously: βr + αr=1
and βa = βb. Here, we will impose some conditions on the coefficients βr and
αr that ensure H(µ) to be row diagonally dominant. Let first assume that
0 < βr;αr < 1, then hij ≥ 0 for 1 ≤ i, j ≤ I + J .
Case 1: 1 ≤ i ≤ I

|hii| >
I+J∑
j 6=i

|hij | ⇔
J∑
j=1

(
(1− αa + βa)µaij + (1− αb + βb)µbij

)
< mi.(45)

Notice that

max
(

(1− αa + βa), (1− αb + βb)
) J∑
j=1

(
µaij + µbij

)
< mi ⇒

J∑
j=1

(
(1− αa + βa)µaij + (1− αb + βb)µbij

)
< mi,

and

max
(

(1− αa + βa), (1− αb + βb)
) J∑
j=1

(
µaij + µbij

)
< mi ⇔

max
(

(1− αa + βa), (1− αb + βb)
)
ρmi < 1,

where ρmi ≡
mi−µi0

mi
is the rate of matched men of type i. The latter inequality

is equivalent to max(βb−αb, βa−αa) <
1−ρmi
ρmi

. Therefore, if max(βb−αb, βa−
αa) <

1−ρmi
ρmi

for all i then |hii| >
∑I+J
j 6=i |hij |.

Case 2: I + 1 ≤ i ≤ I + J .

Similarly, we can show that if min(βb − αb, βa − αa) > − 1−ρfj
ρfj

for all j where

ρfj ≡
fj−µ0j

fj
is the rate of matched women of type j, then we have |hii| >∑I+J

j 6=i |hij |.
Assume that the two latter restrictions on βr and αr hold in the rest of the
proof. The Schur complements of the H(µ) upper I×I and lower J×J diagonal
blocks are SH11 = H22 −H21(H11)−1H12 and SH22 = H11 −H12(H22)−1H21.
Since H has been showed to be diagonally dominant, Theorem 1 of Carlson and
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Markham (1979 p 249) implies that the two schur complements are also diago-
nally dominant. Therefore, SH11 and SH22 are also row diagonally dominant.
We can easily see that SH11 and SH22 are also Z-matrices (i.e., members of
the class of real matrices with nonpositive off-diagonal elements). By applying
Theorem 4.3 of Fiedler and Ptak (1962) it follows that they are M-matrices and
then SH−1

11 = 0 and SH−1
22 = 0. These results are sufficient to establish the sign

structure of H−1(µ). H−1(µ) =

(
W11 W12

W21 W22

)
=

+
... −

. . . . . .

−
... +

 where Wij are

exactly defined as defined in Graham (2013. p 16).
Step 3: Derivation of H−1(µ)
Following Graham we can show the following inequalities:

W11 ≥ H−1
11 +H−1

11 H12H
−1
22 H21H

−1
11 = LW11

W22 ≥ H−1
22 +H−1

22 H21H
−1
11 H12H

−1
22 = LW22

W12 ≤ −H−1
11 H12H

−1
22 = UW12

W21 ≤ −H−1
22 H21H

−1
11 = UW21.

Using the expression of the matrix H(µ) and after some tedious calculations we
can show the following: LW11 = H−1

11 +
1
m∗1

m1

m∗1

∑J
j=1

[αaµa
1j+αbµb

1j ][βaµa
1j+βbµb

1j ]

f∗j
· · · 1

m∗1

mI

m∗I

∑J
j=1

[αaµa
Ij+αbµb

Ij ][βaµa
1j+βbµb

1j ]

f∗j
...

. . .
...

1
m∗I

m1

m∗1

∑J
j=1

[αaµa
1j+αbµb

1j ][βaµa
Ij+βbµb

Ij ]

f∗j
· · · 1

m∗I

mI

m∗I

∑J
j=1

[αaµa
Ij+αbµb

Ij ][βaµa
Ij+βbµb

Ij ]

f∗j


where

m∗i ≡ mi −
J∑
j=1

[(1− αa)µaij + (1− αb)µbij ], for all 1 ≤ i ≤ I

and

f∗j ≡ fj −
I∑
i=1

[(1− βa)µaij + (1− βb)µbij ], for all 1 ≤ j ≤ J.

Moreover, we can show that:

(LW11)ii =
mi

m∗i

[
1 +

1

m∗i

J∑
j=1

[αaµaij + αbµbij ][β
aµaij + βbµbij ]

f∗j

]
> 1,

for all 1 ≤ i ≤ I. Therefore we have LW11 > II . Similarly, we have also the
following:
LW22 = H−1

22 +
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
1
f∗1

f1
f∗1

∑I
i=1

[αaµa
i1+αbµb

i1][βaµa
i1+βbµb

i1]
m∗i

· · · 1
f∗1

fJ
f∗J

∑I
i=1

[αaµa
i1+αbµb

i1][βaµa
iJ+βbµb

iJ ]
m∗i

...
. . .

...
1
f∗J

f1
f∗1

∑I
i=1

[αaµa
iJ+αbµb

iJ ][βaµa
i1+βbµb

i1]
m∗i

· · · 1
f∗J

fJ
f∗J

∑I
i=1

[αaµa
iJ+αbµb

iJ ][βaµa
iJ+βbµb

iJ ]
m∗i


Moreover, we can show that:

(LW22)jj =
fj
f∗j

[
1 +

1

f∗j

I∑
i=1

[αaµaij + αbµbij ][β
aµaij + βbµbij ]

m∗i

]
> 1,

for all 1 ≤ j ≤ J . Therefore, we have LW11 > IJ . Now, let us look at the
off-diagonal blocks of H(µ)−1.

UW12 = −


[βaµa

11+βbµb
11]

m∗1f
∗
1

f1 · · · [βaµa
1J+βbµb

1J ]
m∗1f

∗
J

fJ
...

. . .
...

[βaµa
I1+βbµb

I1]
m∗If

∗
1

f1 · · · [βaµa
IJ+βbµb

IJ ]
m∗If

∗
J

fJ



and UW21 = −


[αaµa

11+αbµb
11]

m∗1f
∗
1

m1 · · · [αaµa
I1+αbµb

I1]
m∗1f

∗
J

mI

...
. . .

...
[αaµa

1J+αbµb
1J ]

m∗If
∗
1

m1 · · · [αaµa
IJ+αbµb

IJ ]
m∗If

∗
J

mI


Step 4: Main results
Case 1: Type specific elasticities of single hood
By applying the implicit function theorem to the equation (44) we have: ∂µ

∂mi
=

J(µ)−1 ∂B
∂mi

for 1 ≤ i ≤ I and ∂µ
∂fj

= J(µ)−1 ∂B
∂fj

for all 1 ≤ j ≤ J , where
∂B
∂mi

= (0, ..., 0, µi0

mi
, 0, ..., 0)′ and ∂B

∂fj
= (0, ..., 0,

µ0j

fj
, 0, ..., 0)′ are (I + J) vectors

such that the non-zero entries are respectively at the ith row and the (I + j)th

row. Let hk = (0, ..., 0, 1, 0, ..., 0)′ be a (I + J) vector such that the non-zero
entry is at the kth row. We have the following:

U(µ)−1 ∂µ

∂mi
mi = U(µ)−1J(µ)−1 ∂B

∂mi
mi

= H(µ)−1U(µ)−1hiµi0

= H(µ)−1hi

= [H(µ)−1]·i (46)

for 1 ≤ i ≤ I, where [H(µ)−1]·i represents the ith column of the matrix H(µ)−1.
Similarly, we can show that U(µ)−1 ∂µ

∂fj
fj = [H(µ)−1]·(I+j) for 1 ≤ j ≤ J .

Putting these results together, we get the following inequalities:

mi

µk0

∂µk0

∂mi
≥


1
m∗i

mk

m∗k

∑J
j=1

[αaµa
kj+αbµb

kj ][βaµa
kj+βbµb

kj ]

f∗j
> 0 if k 6= i

mi

m∗i
[1 + 1

m∗i

∑J
j=1

[αaµa
ij+αbµb

ij ][βaµa
ij+βbµb

ij ]

f∗j
] > 1 if k = i,

for 1 ≤

k ≤ I.
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fj
µ0k

∂µ0k

∂fj
≥


1
f∗j

fk
f∗k

∑I
i=1

[αaµa
ik+αbµb

ik][βaµa
ik+βbµb

ik]
m∗i

> 0 if k 6= j

fj
f∗j

[1 + 1
f∗j

∑I
i=1

[αaµa
ij+αbµb

ij ][βaµa
ij+βbµb

ij ]

m∗i
] > 1 if k = j,

for 1 ≤

k ≤ J .

mi

µ0j

∂µ0j

∂mi
≤ −

[αaµaij + αbµbij ]

m∗i f
∗
j

mi < 0

and
fj
µi0

∂µi0
∂fj

≤ −
[βaµaij + βbµbij ]

m∗i f
∗
j

fj < 0

for 1 ≤ i ≤ I and 1 ≤ j ≤ J .

B.3 Proof of Proposition 2

Recall, from the result of Theorem 1 we know that the fixed point representation
(44) admits a unique solution. Therefore, µ − B(µ;m, f, θ) must be at least
locally invertible at the equilibrium. This ensures that it jacobian matrix J(µ)
does not vanish at the equilibrium. Then, det(J(µ)) 6= 0 for all βr, αr > 0. Since
we shown within Step 1 of proof of Theorem 2 that J(µ) = U(µ)H(µ)U(µ)−1

for all βr, αr > 0, we have then det(H(µ)) 6= 0. Moreover, we have shown that

I∑
i=1

U(µ)−1 ∂µ

∂mi
mi +

J∑
j=1

U(µ)−1 ∂µ

∂fj
fj =

I∑
i=1

[H(µ)−1]·i +

J∑
j=1

[H(µ)−1]·(I+j).

If βr + αr = 1, we observe that all elements of H(µ) are non-negative and the
rows sum to one. Therefore, H(µ) is a row stochastic matrix, see Horn and
Johnson (2013, p.547), with an inverse whose rows also sum to one. Then,

[H(µ)−1]·i +

J∑
j=1

[H(µ)−1]·(I+j) = ιI+J .

where ιI+J = (1, ..., 1)′. The last equality holds since the rows of [H(µ)−1] sum
to one.

C Figures and Tables
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Figure 1: Marital Status by Gender and Year.
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Figure 2: Fraction of individual by gender, education and year.
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Table 1: Summary Statics∗.

 

Variable Obs Mean Std. Dev. Min Max 
N cohabitations 1113 710.7491 1367.211 3 15362 
N marriages 1283 5023.924 9981.822 6 118867 
N males 1377 49097.82 67662.33 174 568449 
N females 1377 48319.55 67411 143 580493 
N unmatched males 1377 20361.38 30701.33 165 262267 
N umatched females 1377 18757.32 28271.38 76 236391 
Year 1377 2000 8.167932 1990 2010 
 

*An observation is a state/year. There are 51 states which includes DC. Observations with 0 
cohabitation or marriages are excluded. 
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Table 2: Ordinary Least Square (OLS).

 

 1a 1b 2a 2b 3a 3b 

Dep. Var. LCOH LMAR LCOH LMAR LCOH LMAR 
LU_M (𝛼) 0.562 0.536 0.320 0.244 0.557 0.626 
 (0.041)** (0.048)** (0.075)** (0.061)** (0.084)** (0.056)** 
LU_F (β) 0.531 0.665 0.630 0.609 0.827 0.939 
 (0.040)** (0.047)** (0.076)** (0.058)** (0.078)** (0.051)** 

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻    2.31 

(0.078)** 
 

2.44 
(0.069)** 

2.290 
(0.071)** 

2.412 
(0.048)** 

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿    1.78 

(0.087)** 
 

2.52 
(0.082)** 

1.781 
(0.080)** 

2.464 
(0.063)** 

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿    0.784 

(0.147)** 
 

1.43 
(0.092)** 

0.796 
(0.145)** 

1.426 
(0.084)** 

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻    1.33 

(0.141)** 
1.37 

(0.101)** 
1.344 

(0.135)** 
1.379 

(0.083)** 
Y2000   0.289 -0.287 0.313 -0.277 
   (0.042)** (0.032)** (0.037)** (0.022)** 
Y2010   0.627 -0.604 0.615 -0.667 
   (0.041)** (0.037)** (0.040)** (0.030)** 
STATE     Y Y 
_cons -4.788 -3.981 -2.842 1.172 -7.359 -5.015 
 (0.383)** (0.441)** (0.196)** (0.158)** (0.772)** (0.543)** 
       
R2 0.51 0.45 0.90 0.95 0.92 0.97 
N 1,113 1,283 1,113 1,283 1,113 1,283 
       

𝛼
𝛽 1.058 

(0.137) 
0.806 

(0.115) 
0.508 

(0.178) 
0.400 

(0.138) 
0.673 

(0.146) 
0.667 

(0.082) 
𝛼 + 𝛽 1.093 

(0.039) 
1.202 

(0.045) 
0.950 

(0.018) 
0.853 

(0.016) 
1.384 

(0.079) 
1.57 

(0.057) 
𝛼ℳ

𝛽ℳ
𝛽𝒞

𝛼𝒞
 

 0.762 
(0.147) 

 0.788 
(0.387) 

 0.991 
(0.246) 

𝑝𝑟𝑜𝑏 𝛼ℳ = 𝛼𝒞

𝛽ℳ = 𝛽𝒞  

 

0.091  0.001  0.117 

       
* p<0.05; ** p<0.01 
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Table 3: Instrumental Variable (IV).

 

 1a 1b 2a 2b 3a 3b 

Dep. Var. LCOH LMAR LCOH LMAR LCOH LMAR 
LU_M (𝛼) 0.574 0.599 0.267 0.164 0.556 0.728 
 (0.044)** (0.053)** (0.086)** (0.074)* (0.095)** (0.070)** 
LU_F (β) 0.527 0.717 0.682 0.731 0.915 1.186 
 (0.042)** (0.052)** (0.089)** (0.070)** (0.090)** (0.058)** 
       

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻    2.315 

(0.079)** 
2.436 
(0.073)** 

2.282 
(0.071)** 

2.393 
(0.051)** 

       

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿    1.783 

(0.087)** 
2.514 

(0.081)** 
1.773 

(0.080)** 
2.440 

(0.051)** 
       

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿    0.784 

(0.149) 
1.430 

(0.092)** 
0.802 

(0.147)** 
2.440 

(0.064)** 
       

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻    1.340 

(0.141) 
1.377 

(0.104)** 
1.350 

(0.135)** 
1.428 

(0.086)** 
       
Y2000   0.293 -0.277 0.320 -0.258 
   (0.042)** (0.035)** (0.038)** (0.025)** 
Y2010   0.624 -0.612 0.607 -0.694 
   (0.041)** (0.038)** (0.039)** (0.030)** 
STATE     Y Y 
_cons -4.806 -5.215 -2.806 0.775 -8.045 -8.216 
 (0.384)** (0.452)** (0.196)** (0.180)** (0.798)** (0.663)** 
       
R2 0.51 0.45 0.90 0.95 0.92 0.97 
N 1,113 1,283 1,113 1,283 1,113 1,283 
       

𝛼
𝛽 1.045 

(0.132) 
0.808 

(0.107) 
0.346 

(0.165) 
0.201 

(0.103) 
0.605 

(0.135) 
0.606 

(0.065) 
𝛼 + 𝛽 1.102 1.316 0.950 0.892 1.501 1.908 

 (0.038) (0.045) (0.018) (0.016) (0.082) (0.064) 
𝛼ℳ

𝛽ℳ
𝛽𝒞

𝛼𝒞
 

 0.771 
(0.140) 

 0.521 
(0.347) 

 1.00 
(0.249) 

𝑝𝑟𝑜𝑏 𝛼ℳ = 𝛼𝒞

𝛽ℳ = 𝛽𝒞  

	
  

 0.000  0.090  0.000 

       
* p<0.05; ** p<0.01 
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Table 4: IV with time varying match effects.

 

 1a 1b 2a 2b 

Dependent variable LCOH LMAR LCOH LMAR 
LU_M (𝛼) 0.415 0.357 0.576 0.754 
 (0.071)** (0.064)** (0.077)** (0.057)** 
LU_F (β) 0.528 0.524 0.688 0.885 
 (0.071)** (0.063)** (0.073)** (0.050)** 

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻

 
2.288 

(0.148)** 
2.458 

(0.087)** 
2.278 

(0.145)** 
2.440 

(0.045)** 

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿

 
1.504 

(0.116)** 
2.255 

(0. .121)** 
1.514 

(0.103)** 
2.198 

(0.067)** 

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿

 
1.169 

(0.283)** 
1.698 

(0.136)** 
0.787 

(0.211)** 
1.702 

(0.110)** 

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻

 
0.693 

(0.260)** 
1.305 

(0.134)** 
1.177 

(0.266)** 
1.313 

(0.119) 
     

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻

∗ 𝑌2000 
0.259 

(0.181) 
-0.011 
(0.191) 

0.663 
(0.230)** 

-0.097 
(0.119) 

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿

∗ 𝑌2000 
0.346 

(0.323)  
0.346 

(0.186) 
0.257 

(0.153) 
0.337 

(0.124)** 

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿

∗ 𝑌2000 
0.032 

(0.330) 
-0.279 
(0.187) 

0.332 
(0.317) 

-0.274 
(0.151) 

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻

∗ 𝑌2000 
1.133 

(0.252) 
-0.042 
(0.193) 

0.040 
(0.311) 

-0.052 
(0.152) 

     

𝐿
𝐻𝐻 ∗𝑀𝑀
𝐻𝑀 ∗𝑀𝐻

∗ 𝑌2010 
1.133 

(0.252)** 
-0.208 
(0.199) 

1.062 
(0.232)** 

-0.396 
(0.128) 

𝐿
𝑀𝑀 ∗ 𝐿𝐿
𝐿𝑀 ∗𝑀𝐿

∗ 𝑌2010 
0.692 

(0.190)** 
0.534 

(0.200)** 
0.679 

(0.181)** 
0.540 

(0.162)** 

𝐿
𝐻𝑀 ∗𝑀𝐿
𝑀𝑀 ∗ 𝐻𝐿

∗ 𝑌2010 
-0.384 
(0.261) 

-0.609 
(0.268)** 

-0.323 
(0.261) 

-0.655 
(0.246)** 

𝐿
𝑀𝐻 ∗ 𝐿𝑀
𝑀𝑀 ∗ 𝐿𝐻

∗ 𝑌2010 
0.394 

(0.392) 
0.264 

(0.234) 
0.391 

(0.376) 
0.237 

(0.203) 
Y2000 0.693 0.014 0.669 -0.071 
 (0.104)** (0.075) (0.091)** (0.054) 
Y2010 1.122 -0.097 1.061 -0.274 
 (0.102)** (0.079) (0.092)** (0.057)** 
STATE   Y Y 
_cons -3.075 0.618 -6.512 -5.900 
 (0.185)** (0.161)** (0.735)** (0.506)** 
R2 0.91 0.96 0.93 0.98 
N 1,113 1,283 1,113 1,283 
     

𝛼
𝛽

 0.786 
(0.239) 

0.681 
(0.203) 

0.836 
(0.174) 

0.852 
(0.096) 

𝛼 + 𝛽 0.943 0.881 1.264 1.640 
 (0.017) (0.016) (0.076) (0.055) 

𝛼ℳ

𝛽ℳ
𝛽𝒞

𝛼𝒞
 

 0.866 
(0.369) 

 1.019 
(0.241) 

𝑝𝑟𝑜𝑏 𝛼ℳ = 𝛼𝒞

𝛽ℳ = 𝛽𝒞  

	
  

 0.051  0.000 
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