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1 Introduction

In the short/medium term, renewables cannot be deployed at a large scale to replace coal

and other fossil fuels in electricity generation, on the one hand because they are on average

still more costly than fossil fuels, and on the other hand because they are both variable,

which is predictable (night and day, seasons), and intermittent, which is not (cloud cover,

etc.). But in the future the production of electricity has to be decarbonized, and producing

energy by renewable means seems to be the only possibility to do so1, before nuclear fusion

becomes eventually available.

The literature considering the penetration of renewables in the energy mix consists so far

in two rather separate trends.

On the one hand, macro-dynamic models à la Hotelling consider renewable energy as an

abundant and steady flow available with certainty, possibly after an investment in capacity

has been made, at a higher unit cost than fossil energy2. The issue is the cost –otherwise

clean renewable energy would replace polluting fossil fuels immediately. Thus standard

models of energy transition ignore variability and intermittency and focus on the cost issue.

However, the expansion of renewables will probably not be limited by the direct costs of

electricity generation in the (near) future. Costs have already been widely reduced, due

to technical progress and learning effects in production and installation, and the decrease

is expected to continue, until a limit lower bound of the cost is reached. For instance,

1Carbon Capture and Storage (CCS) is another option, but it is still expensive and can only offer a
partial solution as the potential carbon sinks are of limited capacity. Moreover, CCS has already been
extensively studied. See for instance Lafforgue, Magne and Moreaux (2008).

2See, for early path-breaking papers, Hoel and Kverndokk (1996), and Tahvonen (1997).
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according to the International Energy Agency (2011), solar PV costs have been reduced

by 20% for each doubling of the cumulative installed capacity. The Energy Information

Administration reports that the US average levelized cost of electricity in 2012 is $/MWh

95.6 for conventional coal, 66.3 for natural gas-fired combined cycle, 80.3 for terrestrial

wind, 204.1 for offshore wind, 130 for solar PV, 243 for solar thermal and 84.5 for hydro.

Terrestrial wind and hydro (that we do not consider here because the expansion possibilities

are very limited in developed countries) are already competitive, and solar PV is rapidly

catching up in the US. In sunny and dry countries it is even more so: solar PV has already

obtained grid parity3 in sunny islands, and is expected to reach grid parity very soon for

instance in Italy or California. Hence the real obstacle to a non-marginal expansion of

renewables is not their cost but their variability, their intermittency, and maybe also their

footprint in terms of land use – especially for wind energy.

Another strand of literature is composed of static models not directly interested in energy

transition, but in the design of the electric mix (fossil fuels and renewables) when intermit-

tency is taken into account, with or without storage devices. Ambec and Crampes (2012,

2015) are representative of this literature. They study the optimal electricity mix with in-

termittent renewable sources, and contrast it to the mix chosen by agents in a decentralized

economy where the retailing price of electricity does not vary with its availability. They ex-

amine the properties of different public policies and their impacts on renewable penetration

in the electric mix: carbon tax, feed-in tariffs, renewable portfolio standards, demand-side

management policies.

A recent survey on the economics of solar electricity (Baker et al., 2013) emphasizes the lack

of economic analysis of a decentralized clean energy provision through renewable sources.

We intend to contribute to fill this lack by putting together the two strands of the literature

mentioned above, in order to make macro-dynamic models more relevant for the study of

the energy transition. Indeed we believe that energy transition is by essence a dynamic

problem, which cannot be fully understood through static models. On the other hand,

dynamic models are so far unable to take into account properly some crucial features of

renewables. We plan to extend to a dynamic setting the static models cited above, taking

into account variability and intermittency, in order to study to what extent they actually

constitute a serious obstacle to energy transition.

In a first step we tackle the variability issue alone. We build a stylized deterministic dynamic

model of the optimal choice of the electricity mix (fossil and renewable), where the fossil

energy, coal, is abundant but CO2-emitting, and the renewable energy, solar, is variable but

clean. The originality of the model is that electricity produced when the renewable source

of energy (solar) is available, and electricity produced when it is not, are considered two

different goods (say day-electricity and night-electricity). At each period of time, consumers

3Grid-parity is reached when the cost of electricity generation with the renewable source is roughly equal
to the retailing electricity price.
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derive utility from the consumption of the two goods. Considering that there are two differ-

ent goods allows taking into account intra-day variability. Day-electricity can be produced

with coal and/or solar. Night-electricity can be produced with coal, or by the release of

day-electricity that has been stored to that effect. Storing energy is costly due to the loss

of energy during the restoration process. We consider that coal and solar are available at

zero variable costs, in order to focus on the variability and intermittency issues. We also

make the assumption that at the beginning of the planning horizon coal-fired power plants

already exist so that there is no capacity constraint on the production of electricity by the

fossil source, but that the existing solar capacity is small so that investments are to be

made in order to build up a sizable capacity. We solve the centralized program under the

constraint of a carbon budget that cannot be exceeded and derive an optimal succession

of regimes. We show that with a low initial solar capacity it is optimal to first use fossil

fuels during night and day, then use fossil fuels during night only and finally go for no fossil

fuels at all. The optimal dynamics for the capacity of solar power plants is derived, as well

as the optimal amount of electricity stored in time. Simulations allow us to analyze the

consequences of improvements in the storage and solar power generation technologies and

of a more stringent environmental policy on the optimal investment decisions and energy

mix.

In a second step, we introduce intermittency4. in the model and study the design of the

power system enabling to accommodate it. With intermittency, day-electricity generation

by solar power plants becomes uncertain. We consider that there is only partial generation

if solar radiations are too weak due for instance to the cloud system, which occurs with a

given probability. The succession of regimes is now more complex. It depends on the relative

values of the efficiency of the storage technology, the weather pattern and whether there is

sun at peak or off-peak periods. We perform simulations to compare the variability-only and

the variability and intermittency solutions, and show that intermittency does not matter so

much, rejoining there the empirical result of Gowrisankaran et al. (2016). Simulations also

allow us to do a number of comparative dynamics exercises. We show that a lenient climate

policy delays both storage and the switch to clean energy, as does a higher probability of bad

weather. Off-peak sun, rather than peak sun, increases storage and hinders consumption.

Finally, we go back to the standard literature that ignores variability and intermittency.

Joskow (2011) underlines the mistakes that are made when doing so, particularly in the

computation of the levelized cost of electricity. Ignoring variability and intermittency and

reasoning on average values gives an undue advantage to renewable sources and leads to

taking wrong decisions. We compare here the optimal solution and the solution of the model

when variability and intermittency are taken into account only on average. Solar panel

accumulation is not very sensitive to variability neither, thanks to storage that smoothes

electricity provision. Indeed, we show that less solar panels are accumulated without storage.

4This means that clean energy is not only variable but intermittent as well
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The structure of the paper is the following. Section 2 sets up the framework, solves the

model and studies the sensitivity of the solution to the main parameters in the case where

variability only is taken into account. Section 3 introduces intermittency. In Section 4 we

compare the previous results with the solution in the case where variability and intermittency

are not fully taken into account. Section 5 concludes.

2 Variability in renewable electricity generation

One of the novelties of the paper is that day and night electricity are modeled as two

different goods that the representative household wants to consume at each point in time.

Energy requirements may be satisfied by fossil sources, let’s say coal, at day and night.

Coal is abundant and carbon-emitting: the issue with coal extraction and consumption

is not scarcity but climate change. There are no extraction costs. Climate policy takes

the form of a carbon budget that society decides not to exceed, to have a good chance to

maintain the temperature increase at an acceptable level -typically 2◦C. This carbon budget

is consumed when coal is burned. It is also possible to use a renewable source of energy,

abundant but clean, provided that a production capacity is built. This energy is variable

i.e. changes in a predictable way. We consider for the purpose of illustration that it is solar

energy, that can be harnessed at day but not at night. Costly investment allows to increase

solar capacity. There exists a storage technology that allows to store imperfectly electricity

from day to night at no monetary cost but with a physical loss.

2.1 The optimal solution

The social planner seeks to maximize the discounted sum of the net surplus of the economy.

Instantaneous net surplus is the difference between the utility of consuming day and night-

electricity and the cost of the investment in solar capacity.5 Day-electricity can be produced

by coal-fired power plants and/or solar plants. A fraction of solar electricity can be stored

to be released at night.6 In addition to fossil electricity, night-electricity can be produced

by the release of solar electricity stored during the day, with a loss.7

5For simplicity and to focus on the variability issue, we ignore the extraction cost of coal and the variable
cost of using solar panels. We suppose that a large fossil capacity exists at the beginning of the planning
horizon but that the initial solar capacity is low.

6It does not make sense to store coal electricity since coal-fired power plants can be operated at night as
well and there is no capacity constraint.

7For instance, according to Yang (2016), the efficiency of pumped hydroelectric storage (defined as the
electricity generated divided by the electricity used to pump water) is lower than 60% for old systems, but
over 80% for state-of-the-art ones.
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The social planner’s programme reads:

max

∫ ∞
0

e−ρt [u (ed(t), en(t))− C(I(t))] dt

ed(t) = xd(t) + (1− a(t))Y (t)

en(t) = xn(t) + ka(t)Y (t)

Ẋ(t) = xd(t) + xn(t) (−λ(t))

Ẏ (t) = I(t) (µ(t))

0 ≤ a(t) ≤ 1 (ωa(t), ωa(t))

X(t) ≤ X (ωX(t))

xd(t) ≥ 0, xn(t) ≥ 0 (ωd(t), ωn(t))

X0 ≥ 0, Y0 ≥ 0 given

where u is the instantaneous utility function, supposed to have the standard properties, ed
and en are respectively day and night-electricity consumption, xd and xn are fossil-generated

electricity consumed respectively at day and night, X is the stock of carbon accumulated

into the atmosphere due to fossil fuel combustion, X is the carbon budget i.e. the ceiling

on the atmospheric carbon concentration, Y is solar capacity, I is the investment in solar

capacity, C(I) is the investment cost function, a is the share of solar electricity produced

at day that is stored to be released at night. The efficiency of the storage technology is

represented by the parameter k ∈ [0, 1] (1 − k is the leakage rate of this technology). ρ is

the discount rate.

We make the following assumptions on the utility and investment cost functions: utility is

logarithmic and investment cost is quadratic (because of adjustment costs):

u (ed, en) = α ln ed + (1− α) ln en, 0 < α < 1

C(I) = c1I +
c2
2
I2, c1, c2 > 0

With these assumptions we are able to solve the problem analytically. We obtain the

following results.

Proposition 1 In the case where only variability of renewable energy is taken into account

and the initial solar capacity is low, the optimal solution consists in 4 phases:

(1) production of day and night-electricity with fossil fuel-fired power plants complemented

at day by solar plants, no storage, investment in solar panels to increase solar capacity (from

0 to T );

(2) production of day-electricity with solar plants only, use of fossil fuel-fired power plants

at night while proceeding with the building up of solar capacity, no storage (from T to Ti);
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(3) production of day-electricity with solar plants only, use of fossil fuel-fired power plants at

night while proceeding with the building up of solar capacity, progressive increase of storage

from 0 to its maximal value, which depends on preferences for day and night-electricity (from

Ti to T );

(4) production of day and night-electricity with solar plants only, storage at its maximum

value at day to produce night-electricity, and investment in solar panels to increase capacity,

up to a steady state (from T to ∞). This last phase begins when the carbon budget is

exhausted.

Proof. See Appendix A.

Proposition 1 shows that it is always optimal to begin installing solar panels immediately

and to use them to complement fossil energy at daytime. However, it is never optimal to

begin storing immediately. Storage would allow saving fossil energy at night, but at the

expense of more fossil at day to compensate for the solar electricity stored; it would also

cause a physical loss of electricity. Even if the storage technology is available, as it is the

case in the model, storage must only begin after fossil has been abandoned at day because

the installed solar capacity has become high enough. Full storage coincides with the final

abandonment of fossil.

We show analytically in Appendix A that the 4 phases identified in Proposition 1 are

characterized by the following equations.

• Evolution of the shadow value λ of the atmospheric carbon stock (the carbon value)

before the carbon budget is exhausted:

λ(t) = λ(0)eρt (1)

• Evolution of solar capacity over the whole horizon:

Ẏ (t) =
1

c2
(µ(t)− c1) (2)

• Evolution of the value of solar capacity in each phase:

Phase (1) µ̇(t) = ρµ(t)− λ(t)

Phase (2) µ̇(t) = ρµ(t)− α

Y (t)

Phase (3) µ̇(t) = ρµ(t)− kλ(t) (3)

Phase (4) µ̇(t) = ρµ(t)− 1

Y (t)
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• Fossil fuel use, storage and total electricity consumption in each phase:

Phase (1) xd(t) =
α

λ(t)
− Y (t) xn(t) =

1− α
λ(t)

a(t) = 0

ed(t) =
α

λ(t)
en(t) =

1− α
λ(t)

Phase (2) xd(t) = 0 xn(t) =
1− α
λ(t)

a(t) = 0 (4)

ed(t) = Y (t) en(t) =
1− α
λ(t)

Phase (3) xd(t) = 0 xn(t) =
1

λ(t)
− kY (t) a(t) = 1− α

kλ(t)Y (t)

ed(t) =
α

kλ(t)
en(t) =

1− α
λ(t)

Phase (4) xd(t) = 0 xn(t) = 0 a∗ = 1− α
ed(t) = αY (t) en(t) = (1− α)Y (t)

The carbon value follows the Hotelling rule (Eq.(1)).

The joint paths of solar capacity Y and its shadow value µ are determined by the four

dynamic systems composed of Eq.(2) and each of the equations in system (4). They are

represented on the phase diagram on Figure 1, constructed for a given λ(0) (that reflects

the stringency of the climate constraint). The last phase is a saddle path leading to a

steady state µ∗ = c1 , Y ∗ = 1/(ρc1). Moving backward from the steady state along the

stable branch, date T is reached. The relevant path then corresponds to phase (3) where

the dynamics of Y and µ are independent, until date Ti is reached. From Ti on, the saddle

path of phase (2), corresponding to the steady state µ∗ = c1 , Y ∗∗ = α/(ρc1) is followed

until date T (the steady state is never reached).8 After T the path followed corresponds to

phase (1) where Y and µ are independent, until date 0. The initial shadow value of solar

panels, µ(0) then obtained (as a function of λ(0)) matches the initial condition Y (0) = Y0.

For a given value of λ(0), the joint evolutions of λ and Y trigger the phase switchings, i.e.

gives dates T , Ti and T (see Figure 2 and Eqs. (1) and (2)).

The climate constraint then pins down λ(0).

In phase (1), ed(t) = α/λ(t) and en(t) = (1 − α)/λ(t): electricity consumptions are only

driven by the carbon value, i.e. by climate policy. In phase (2) (when there is no storage),

it is still the case for night electricity consumption, but during daytime, electricity only

depends on installed solar capacity.9 In phase (3) storage occurs and no fossil is used

8Phase (2) does not exist if there is no loss in the storage technology (k = 1).
9It implies that there is overcapacity of fossil generation during daytime.

7



during daytime; but due to storage (driven by the climate constraint), it is again only

the climate constraint that determines electricity consumption at each period. In phase

(4), when electricity production is totally carbon-free, electricity consumption night and

day only depends on installed solar capacity. The amount of electricity stored at day to

be consumed at night only depends on the preference for night-electricity: a∗ = 1 − α. If

α > 1/2, consumers prefer consuming at day, when there is sun. This means that peak

time consumption coincides with the availability of solar electricity. It is obviously the

most favorable case. If on the contrary α < 1/2, sun is shining at off-peak time. This

would correspond to the Californian duck documented by CAISO10 and recently analyzed

by Fowlie11 and Wolfram12

-
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Figure 1: Phase diagram

10What the duck curve tells us about managing a green grid,
https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables FastFacts.pdf

11See ”The duck has landed”, the Energy Institute Blog, https://energyathaas.wordpress.com/2016/05/02/the-
duck-has-landed/

12See ”What’s the Point of an Electricity Storage Mandate?” https://energyathaas.wordpress.com/2013/07/29/whats-
the-point-of-an-electricity-storage-mandate/
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Figure 2: Solar capacity and carbon value before the ceiling

2.2 Numerical illustrations

We now perform some comparative dynamics exercises, to assess the impact of the stringency

of climate policy and of the value of the parameters on the level and the time profile

of electricity consumption, storage and solar capacity. The parameters of the reference

simulation are given in Table 1. They are chosen for illustrative purposes only, without any

pretension of realism.

ρ k α c1 c2 Y0 X0 X
0.04 0.6 0.8 1 20 0 0 50

Table 1: Parameters in the reference simulation, variability only

In the reference simulation, day-electricity consumption is W-shaped (V-shaped if k =

1). It is first decreasing because of the rise of the carbon value (phase (1)); it is then

increasing as fossil fuel is abandoned at day and more solar panels are installed (phase (2));

next, storage begins and increases, at the expense of day-electricity consumption, which

decreases (phase (3)); finally, the increasing use of solar panels joint with a constant share

of day-electricity stored generates a rise in day-electricity consumption (phase (4)). Night-

electricity consumption is V-shaped: it is driven by the carbon value i.e. climate policy

while fossil energy is used at night, hence decreasing (phases (1)-(3)); then, when fossil fuel
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is abandoned at night, it increases with the stock of solar panels and the development of

storage.

The comparative statics exercises results are represented on figures 3 to 5.

• Less stringent climate policy (figure 3):

In the short run energy consumption at day and night are higher than in the reference

case, storage occurs later, the switch to clean energy is postponed. In the medium

run energy consumption becomes lower than in the reference case, because investment

in solar panels has been lower: there is an hysteresis effect. Even in the absence of

explicit damages due to climate change, a lenient climate policy has adverse effects in

the long run because it delays investment in clean energy.

• Less efficient storage technology (figure 4):

A less efficient storage technology translates in the model in a higher loss rate 1− k.

Then, the date at which storage begins is postponed, which allows to consume more

at day in phase (2). Of course night-electricity consumption is smaller. Again an hys-

teresis effect appears: consumption is lower in the long run, because the development

of solar panels has been slower.

• Off-peak sun (figure 5):

In the reference simulation, consumers prefer to consume electricity when the sun is

shining and solar panels can harness its radiation, i.e. when there is sun at peak time.

We make in this simulation the opposite assumption: consumers prefer to consume

electricity when there is no sun (it corresponds to the Californian duck case). Clearly,

the situation is now less favorable. At each date, total electricity consumption (over

day and night) is reduced. The date at which fossil is not used at day anymore

is brought forward so that fossil consumption at night may be higher, and storage

occurs earlier. The long run level of storage has to be higher, which means more

overall electricity loss.
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Figure 3. Effect of a less stringent climate policy under variability only (X = 50 in blue

and X = 100 in red)
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Figure 4. Effect of a less efficient storage technology under variability only (k = 0.6 in blue

and k = 0.2 in black)
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Figure 5. Effect of a smaller preference in day electricity under variability only (α = 0.8 in

blue and α = 0.2 in green)

3 Intermittency in renewable electricity generation

We now account for the fact that renewable electricity generation is not only variable but

intermittent as well, i.e. some of its variations are not predictable. For the purpose of

illustration, we again consider the example of solar energy. Solar radiations can be fully

harnessed during the day if there is sun, but can only be partially harnessed during the day if

there are clouds. No harnessing can happen during the night. As only the expected dynamics

of pollution is known, the ceiling constraint on the stock of carbon into the atmosphere is

now in expectation.
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3.1 The optimal solution

During the day, the weather is sunny with a probability q and solar panels are then producing

electricity at full capacity Y . With a probability (1−q) the weather is cloudy and solar panel

only produce φY electricity with 0 < φ < 1. As before, there exists a storage technology

that allows to store imperfectly electricity from day to night at no monetary cost but with

a physical loss. With intermittency, the amount stored depends on the weather: au denotes

storage when the sun is shining, while storage when there are clouds in noted al. Accordingly,

fossil-generated electricity consumption and total electricity consumption are denoted with

superscripts u and l depending on the weather. The social planner’s programme becomes:

max

∫ ∞
0

e−ρt
[
qu (eud(t), e

u
n(t)) + (1− q)u

(
eld(t), e

l
n(t)

)
− C(I(t))

]
dt

eud(t) = xud(t) + (1− au(t))Y (t), eld(t) = xld(t) + (1− al(t))φY (t)

eun(t) = xun(t) + kau(t)Y (t), eln(t) = xln(t) + kal(t)φY (t)

E(Ẋ(t)) = q (xud(t) + xun(t)) + (1− q)
(
xld(t) + xln(t)

)
(−λ(t))

Ẏ (t) = I(t) (µ(t))

0 ≤ au(t) ≤ 1, 0 ≤ al(t) ≤ 1 (ωua(t), ω
u
a(t)), (ωla(t), ω

l
a(t))

E(X(t)) ≤ X (ωX(t))

xud(t) ≥ 0, xun(t) ≥ 0, xld(t) ≥ 0, xln(t) ≥ 0 (ωud (t), ωun(t), ωld(t), ω
l
n(t))

X0 ≥ 0, Y0 ≥ 0 given

The characteristics of the optimal solution are described in Proposition 2. The proofs are

collected in Appendix B.

Proposition 2 When the intermittency of renewable energy is taken into account and the

initial solar capacity is low, the optimal solution is composed of seven phases (see Figure 6).

(1) Fossil is used night and day whatever the state of nature, complemented by some solar

at day. There is no storage. Investment takes place to build-up solar production capacity.

(2) Solar capacity is large enough for fossil to be dropped at day in the good state of nature

but not in the bad state. There is still no storage.

(3) Solar capacity is large enough either to drop fossil at day in the bad state of nature

without storing, or to keep fossil at day in the bad state and begin storing in the good state.

The first option is chosen when k < φ i.e. the storage technology is rather poor and the

cloud problem not so bad. The second option is adopted when φ < k.

(4) There is storage in the good state of nature while fossil is still used at night in the two

states or at night and day in the bad state only. The first option is chosen when k < φ/α
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i.e. the storage technology is rather poor, the cloud problem not so bad, and the preference

for day-electricity rather low. The second option is adopted when φ/α < k.

(5) If k < φ/α and φ/α > 1, fossil is used night and day in the bad state and storage begins

in the bad state, whereas if φ/α < k or k < φ/α < 1 fossil is used at night in the bad state

only without storing in the bad state.

(6) The complement is done, to get storage in both states and fossil at night only in the bad

state only.

(7) Fossil is completely abandoned, and there is storage in both states.

Notice that the date at which this totally clean last phase begins is determined, inter alia,

by the product kφ (see Eq. (66) in Appendix B). Remember that 1− k is the leakage rate

of the storage technology and 1− φ the loss rate induced by clouds on the solar technology.

When the leakage and loss rates are small, the clean phase logically begins early. It is all the

more postponed since one of the two rates is high. Moreover, compared to the case where

only variability is taken into account, we see that the clean phase is all the more postponed

since the loss rate induced by clouds is high, which makes perfect sense.

xun xln
xud xld
0 0

xun xln
0 xld
0 0

xun xln
0 0
0 0

xun xln
0 xld
au 0

xun xln
0 0
au 0

0 xln
0 xld
au 0

0 xln
0 0
au 0

xun xln
0 0
au al

0 xln
0 0
au al

0 0
0 0
au al

e
e
e
ee

k < φ

k > φ

k < φ
α

k > φ
α

α < φ

α > φ

Figure 6: Intermittency: the seven phases, depending on the values of k, φ and α

3.2 Numerical illustrations

These simulations are for illustrative purpose only. Parameters are given in Table 2. They

are chosen to illustrate the 5 possible different cases identified in the resolution (see Figure

6 and Appendix B):
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• Case I: k < φ < φ/α < 1.

• Case II: k < φ < φ/α, φ/α > 1.

• Case III: φ < k < φ/α, φ/α > 1.

• Case IV: φ < k < φ/α, φ/α < 1.

• Case V: k > φ/α.

In all cases, we consider that solar is shining at peak time (α = 0.8 > 1/2) and that

q = 0.2. In Cases I and II the inefficiency of the storage technology is worse than the cloud

problem (k < φ), whereas it is the contrary in Cases III, IV and V. In Cases I and II and V

the preference for day-electricity consumption comes along with a moderate cloud problem

(φ < α), whereas it is the contrary in Cases II and III.

We arbitrarily choose Case I as our reference case. We check that the results are qualitatively

the same if any other case is taken as reference.

k φ
Case I 0.6 0.7
Case II 0.6 0.9
Case III 0.93 0.9
Case IV 0.8 0.7
Case V 0.93 0.7

Table 2: Parameter values

With no surprise, the general result is that intermittency globally makes matters worse

(see figure 7). Electricity consumption is always smaller with intermittency than under

variability only. The full storage capacity and the no-fossil economy are reached later.

Night-electricity consumption begins to increase later. However differences are not so large.

This is consistent with the empirical findings in Gowrisankaran and Reynolds (2016). For

instance, day-electricity consumption follows a path very close to a W shape as exhibited

under variability only.
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Figure 7. Dynamics of variables of interest under intermittency in Case I (black) and

variability only (green)

Figures 8 to 10 present the same comparative dynamics exercices as in the case with vari-

ability only.

A less stringent climate policy (figure 8) delays storage and the switch to the no-fossil

economy; it increases electricity consumption both night and day in the short and medium

run but decreases them in the long run. As expected, phases during which fossil is used

exhibit the larger differences in consumption. The effects are qualitatively the same as under

variability only (figure 3).

A less efficient storage technology has very few effect in the short run since storage is not

used, and it transfers energy use from night to day in the medium run. In the long run

both day and night energy consumption are smaller. Again, the effects are qualitatively the

same as under variability only (see figures 9 and 4).

In general, when peak consumption occurs when there is sun (therefore solar electricity

generation), the whole daytime energy consumption path is moved up, and the reverse

happens for the night energy consumption. Again, this is in accordance with what has been

obtained without intermittency (see figures 10 and 5).
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Figure 8. Effect of a less stringent climate policy in Case I (X = 50 in blue and X = 100

in red)
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Figure 9. Effect of a less efficient storage technology in Case I (k = 0.6 in black and

k = 0.2 in blue)
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Figure 10. Effect of a smaller preference in day electricity (Case I with α = 0.8 in black

and Case II with α = 0.2 in green)
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Figures 11 and 12 present new exercises: the effect of a larger cloud problem the the effect

of a higher probability of sunny weather. A larger cloud problem (figure 11) delays storage

and the switch to the no-fossil economy and leads to less energy consumption, in particular

during the day in the medium and long run. Such a case is relevant for less sunny countries.

A higher probability of sunny weather (figure 12) has the opposite effect.
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Figure 11. Effect of a larger cloud problem (Case I with φ = 0.7 in black and Case V with

φ = 0.4 in red)
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Figure 12. Effect of a higher probability of sunny weather in Case I (q = 0.2 in black and

q = 0.8 in blue)

4 Appraising the effect of variability and storage

To appraise whether renewables are profitable, variability and intermittency are most of the

time ignored and it is considered that renewables generate electricity in a continuous way,

but at less than full capacity. In order to appraise the consequences of this simplification,
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we consider a special case of our general model where there is constant electricity per unit

generation, that is, when an installed solar capacity Y generates an amount of electricity κY

day and night, where κ is constant. Other assumptions remain the same as in the general

model.

First, we compare solar panels accumulation, fossil fuel use, and electricity consumption

paths under constant per unit generation, with those obtained under variability and inter-

mittency (as derived in the previous sections). As storage is suspected to play a major

role in tackling intermittency and variability, we also compare the model under constant

electricity generation with the one under variability but without storage.13

Under constant per unit generation the social planner program reads:

max

∫ ∞
0

e−ρt [u (ed(t), en(t))− C(I(t))] dt

ed(t) = xd(t) + κY (t)

en(t) = xn(t) + κY (t)

Ẋ(t) = xd(t) + xn(t) (−λ(t))

Ẏ (t) = I(t) (µ(t))

X(t) ≤ X (ωX(t))

xd(t) ≥ 0, xn(t) ≥ 0 (ωd(t), ωn(t))

X0 ≥ 0, Y0 ≥ 0 given

Only three phases appear. In Phase (1), fossil fuels are used night and day. They provide

electricity only during day in Phase (2) if α > 0.5, which we assume (in case α < 0.5, they

are used only during night) and finally, electricity is generated with only solar generation in

Phase (3).

During all these phases, the shadow value λ of the atmospheric carbon stock follows the

Hotelling rule as in the general model. The dynamic equation driving solar capacity accu-

mulation over the whole horizon is the same as in the general model as well. The evolution

13Intermittency could be accounted for as well, but it would complicate the presentation without altering
the qualitative results, as it has been shown in the previous section.) We also appraise the importance of
storage by comparing the general model with the one without storage possibilities.
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of the shadow value of solar capacity in each phase is:

Phase (1) µ̇(t) = ρµ(t)− 2κλ(t)

Phase (2) µ̇(t) = ρµ(t)− κλ(t)− 1− α
Y (t)

Phase (3) µ̇(t) = ρµ(t)− 1

Y (t)

Fossil fuel use and total electricity consumption in each phase are:

Phase (1) xd(t) =
α

λ(t)
− κY (t) xn(t) =

1− α
λ(t)

− κY (t)

ed(t) =
α

λ(t)
en(t) =

1− α
λ(t)

Phase (2) xd(t) =
α

λ(t)
− κY (t) xn(t) = 0

ed(t) =
α

λ(t)
en(t) = κY (t)

Phase (3) xd(t) = 0 xn(t) = 0

ed(t) = κY (t) en(t) = κY (t)

Only Phase (3) is a saddle path. During this phase, electricity generation is completely

carbon-free as solar generation provides the whole electricity and consumptions night and

day only depend on the installed solar capacity. It leads to a steady state µ∗ = c1 , Y ∗ =

1/(ρc1). Moving backward from the steady state along the stable branch, a date is reached

when Phase (2) starts. In this second phase, the dynamics of Y and µ are independent

and fossil fuels are only used during daytime (for α > 0.5). It implies overcapacity of fossil

generation during night, which strikingly differs from what happens in the general model

where such an overcapacity occurs during daytime. Electricity consumption is determined by

climate policy during daytime and by solar capacity during nighttime. Eventually, Phase

(1) is reached, during which Y and µ are independent again, until date 0. Electricity

consumptions night and day require fossil fuels and are determined by the carbon value.14

Numerical simulations allows us to go further into the comparison of the general case

and the constant generation case. First, we consider that constant electricity genera-

tion is equal to the mean of electricity generation under variability and intermittency i.e.

14As in the general model, the initial shadow value of solar panels µ(0) (as a function of λ(0)) matches the
initial condition Y0. For a given value of λ(0) the joint evolutions of λ and Y trigger the phase switchings
and the climate constraint then pins down λ(0).
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κ = 0.5(q + (1 − q)φ). Comparisons with the paths obtained with the general model are

provided in figure 13. As expected, electricity consumptions (that are fictive since solar

generation during night cannot happen in reality) are close to an average of those obtained

under variability and intermittency. It is striking that solar panel accumulation is nearly

insensitive to the account of variability. This comes from the role of storage that provides a

way to transfer solar generated electricity from day to night. We also consider an alternative

assumption for the constant electricity generation, such that the planner is over-optimistic

with respect to κ and, for instance κ = 0.5(q + (1 − q)φ). In this case, solar panel accu-

mulation is quicker when variability is ignored. It must be kept in mind, however, that

the steady state level of the solar panel capacity is the same whether or not variability is

accounted for and regardless of the assumption on κ.
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Figure 13. Comparison of the general case (intermittency in Case I, in green) and the

constant generation case (in blue)

As storage seems to play a large role in smoothing the consequences of variability and

intermittency, we now compare the constant generation model with a model with variability

but no storage. In the latter, the social planner program reads:

max

∫ ∞
0

e−ρt [u (ed(t), en(t))− C(I(t))] dt

ed(t) = xd(t) + Y (t)

en(t) = xn(t)

Ẋ(t) = xd(t) + xn(t) (−λ(t))

Ẏ (t) = I(t) (µ(t))

X(t) ≤ X (ωX(t))

xd(t) ≥ 0, xn(t) ≥ 0 (ωd(t), ωn(t))

X0 ≥ 0, Y0 ≥ 0 given
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Only two phases appear. In Phase (1), fossil fuels are used night and day, but they are

used only during night in Phase (2). During these two phases, the shadow value λ of the

atmospheric carbon stock still follows Hotelling rule. The dynamic equation driving solar

capacity accumulation over the whole horizon is the same as in the general model as well.

The evolution of the value of solar capacity in each phase is:

Phase (1) µ̇(t) = ρµ(t)− λ(t)

Phase (2) µ̇(t) = ρµ(t)− α

Y (t)

Fossil fuels use and total electricity consumption in each phase are:

Phase (1) xd(t) =
α

λ(t)
− Y (t) xn(t) =

1− α
λ(t)

ed(t) =
α

λ(t)
en(t) =

1− α
λ(t)

Phase (2) xd(t) = 0 xn(t) =
1− α
λ(t)

ed(t) = Y (t) en(t) =
1− α
λ(t)

Dynamics for fossil fuels use and electricity consumption are shown in figure 14. Phase (2)

is a saddle path leading to a steady state µ∗ = c1 , Y ∗∗ = α/(ρc1). Along this path, daytime

electricity consumption is determined by solar capacity, but night electricity consumption

still uses fossil fuels as there exists no mean to transfer daytime solar generation towards

the night. Therefore electricity generation is never carbon-free and night consumption (that

is equal to fossil fuels use) asymptotically tends toward zero as it is driven by the climate

constraint. It implies overcapacity of fossil generation during day, as in the general model

(but opposite to what happens if variability is ignored). Moving backward from the steady

state along the stable branch, a date is reached when there is a switch to Phase (1). In this

phase, the dynamics of Y and µ are independent; electricity consumptions night and day

use fossil fuels and are determined by the climate policy.15

15As in the previous models, the initial value of solar panels, µ(0) then provided matches the initial
condition Y0. For a given value of λ(0) the joint evolutions of λ and Y trigger the phase switchings and the
climate constraint then pins down λ(0).
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Figure 14. No storage

Comparisons between the model under variability with no storage and the model under

constant generation is provided in figure 15.

The absence of storage prevents from using solar generated electricity to be used at night.

On the contrary, constant generation allows generation during night as well. Therefore the

benefits of solar panels are larger in the later case. This explains that the steady state level

of the solar capacity is higher when variability and intermittency are ignored (Y ∗ = 1/(ρc1))

than without storage (Y ∗∗ = α/(ρc1)). This result can be observed in figure 15, even if,

during the first periods, accumulation is quicker in the absence of storage. The figure

also shows that, without storage, daytime fossil fuels consumption stops while nighttime

fossil fuels use asymptotically goes to zero, while under constant generation it is nighttime

consumption of fossil fuels that stops first, later followed by a complete stop during daytime

as well.
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Figure 15. The role of storage (no storage in red and constant generation in green)

Another way to appraise the importance of storage is to compare the model without storage

and the general model (with variability, intermittency and storage). Thanks to storage, it

is possible to transfer electricity generated at day using solar capacity towards the night.

Benefits from solar generation are therefore higher with storage, which explains that solar

capacity at the steady state is higher with storage (Y ∗ = 1/(ρc1) compared to Y ∗∗ = α/(ρc1)

without storage). Finally, the value of storage can be appraised by computing the welfares

in the two models.
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5 Conclusion

In this paper, we build a stylized dynamic model of the optimal choice of the electricity

mix, where the fossil energy, coal, is abundant but CO2-emitting, and the renewable energy,

solar, is variable and intermittent but clean. We solve the centralized program under the

constraint of a carbon budget that cannot be exceeded and derive an optimal succession of

regimes. The optimal dynamics for the capacity of solar power plants is derived, as well

as the optimal amount of electricity stored in time. Simulations allow us to show that a

lenient climate policy delays both storage and the switch to clean energy, as does a higher

probability of bad weather. Off-peak sun, rather than peak sun, increases storage and

hinders consumption. We also obtain that, compared with variability only, intermittency

worsens the situation although not so significantly. Solar panel accumulation is not very

sensitive to variability neither, thanks to storage that smoothes electricity provision. Indeed,

we show that less solar panels are accumulated without storage.

This work can be considered as a first step in the study of energy transition under vari-

ability and intermittency of the clean sources. Next steps should concern the account of an

endogenous capacity for the fossil fuel generation. In addition, a decentralized version of

the model would be interesting and challenging as the energy market exhibits several pe-

culiar features, and it would allow designing policy instruments. Finally, R&D investments

improving storage technologies, and learning effects allowing a decrease in the cost of solar

energy may also be considered.

,
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A Variability

The current value Hamiltonian associated to the social planner’s programme reads:

H = u (xd + (1− a)Y, xn + kaY )− C(I)− λ (xd + xn) + µI

and the Lagrangian is:

L = H + ωaa+ ωa(1− a) + ωdxd + ωnxn + ωX
(
X −X

)
The first order conditions are:

∂L
∂xd

= u1 − λ+ ωd = 0

∂L
∂xn

= u2 − λ+ ωn = 0

∂L
∂a

= −Y u1 + kY u2 + ωa − ωa = 0

∂L
∂I

= −C ′(I) + µ = 0

− ∂L
∂X

= ωX = −λ̇+ ρλ

−∂L
∂Y

= −(1− a)u1 − kau2 = µ̇− ρµ

i.e.

u1 = λ− ωd (5)

u2 = λ− ωn (6)

Y (u1 − ku2) = ωa − ωa (7)

C ′(I) = µ (8)

−ωX = λ̇− ρλ (9)

−(1− a)u1 − kau2 = µ̇− ρµ (10)
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The complementarity slackness conditions read:

ωaa = 0, ωa ≥ 0, a ≥ 0

ωa(1− a) = 0, ωa ≥ 0, 1− a ≥ 0

ωdxd = 0, ωd ≥ 0, xd ≥ 0

ωnxn = 0, ωn ≥ 0, xn ≥ 0

ωX
(
X −X

)
= 0, ωX ≥ 0, X −X ≥ 0

Before the ceiling, X < X and ωX = 0. Then FOC (9) reads λ̇/λ = ρ, i.e.:

λ(t) = λ(0)eρt (11)

The shadow price of carbon concentration follows a Hotelling rule before the ceiling, as long

as fossil fuel is used.

A.1 No fossil

This phase is necessarily the last one, and it always exists. Let T ≥ 0 be the date at which

this last phase begins. T is also the date at which the ceiling is reached.

We have xd = 0, xn = 0, ωd > 0, ωn > 0 ∀t ≥ T .

The FOC then read:

α

(1− a)Y
= λ− ωd (12)

1− α
kaY

= λ− ωn (13)

a− (1− α)

a(1− a)
= ωa − ωa (14)

c1 + c2I = µ (15)

λ̇− ρλ = −ωX (16)

µ̇− ρµ = − 1

Y
(17)

The no storage (a = 0) or complete storage (a = 1) cases cannot occur because the marginal

utility of consumption at night or day would become infinite. Hence the solution is an interior

solution on a. Eq. (14) yields:

a∗ = 1− α (18)

There is a constant rate of storage all along this phase, depending on the weight of night-

electricity in utility.
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Eq. (15) and (17) together with Ẏ = I yield a dynamic system in (µ, Y ):{
µ̇ = ρµ− 1

Y

Ẏ = 1
c2

(µ− c1)

Saddle-point. See the phase diagram on Figure 1. The values of µ and Y at the steady state

are:

µ∗ = c1 (19)

Y ∗ =
1

ρc1
(20)

Finally, Eq. (12) and (13) imply:

1

Y
≤ λ and

1

kY
≤ λ

The second condition is more stringent than the first one. It therefore provides the value of

λ at the beginning of this phase:

λ(T ) =
1

kY (T )
(21)

The solution in this phase is to store a fraction 1−α of the electricity produced at day to use

it at night, and to invest in solar panels to increase capacity from Y (T ) (to be determined)

to Y ∗ = 1/ρc1.

A.2 Fossil night and day

This phase is necessarily the first one, if it exists. We denote by T the date at which it ends.

We have xd > 0, xn > 0, ωd = 0, ωn = 0. The FOC read:

α

xd + (1− a)Y
= λ (22)

1− α
xn + kaY

= λ (23)

(1− k)λY = ωa − ωa (24)

c1 + c2I = µ (25)

− ((1− a) + ka)λ = µ̇− ρµ (26)

to which we add (11).

The left-hand side member of (24) is necessarily positive. Hence the case ωa = 0 and ωa > 0,

i.e. a = 1 (full storage) is excluded. The interior case ωa = 0 and ωa = 0, i.e. 0 < a < 1,
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is possible iff Y = 0, which means that no intermittent source of energy is used. But it

does not make sense to have a positive capacity of storage absent any intermittent source

of energy. This case is also excluded. The only possibility is thus ωa > 0 and ωa = 0, i.e.

a = 0 : no storage.

With no storage, Eq. (26) simplifies into:

µ̇− ρµ = −λ (27)

Using (11), this equation can be integrated, to obtain µ(t) as a function of µ(0), λ(0) and

time. It allows us to obtain I(t) and, by integration, Y (t) as functions of the same variables.

We suppose that Y0 is low enough, s.t. I(0) > 0, which requires µ(0) > c1.

Eq. (22) and (23) now read:

α

xd + Y
= λ (28)

1− α
xn

= λ (29)

Eq. (29) and (28) allow to compute xn and xd:

xn(t) =
1− α
λ(t)

(30)

xd(t) =
α

λ(t)
− Y (t) (31)

At the end of this phase, xd(T ) = 0 (xn(T ) = 0 is impossible, since it would require

λ(T ) = +∞). Hence:

λ(T ) =
α

Y (T )
(32)

xn(T ) =
1− α
λ(T )

(33)

The solution in this phase is to use fossil fuel-fired power plants night and day but less and

less, not to store, and to build up solar capacity, from Y0 to Y (T ) to be determined.
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A.3 Fossil at night only

This or these phases are intermediate. We have here xd = 0, xn > 0, ωd > 0, ωn = 0 and

the FOC read:

α

(1− a)Y
= λ− ωd (34)

1− α
xn + kaY

= λ (35)

α

1− a
− (1− α)kY

xn + kaY
= ωa − ωa (36)

c1 + c2I = µ (37)

−α
Y
− (1− α)ka

xn + kaY
= µ̇− ρµ (38)

to which we add (11).

• In the case of no storage, the FOC become:

α

Y
= λ− ωd (39)

1− α
xn

= λ (40)

α− λkY = ωa (41)

c1 + c2I = µ (42)

−α
Y

= µ̇− ρµ (43)

Eq. (42) and (43) together with Ẏ = I yield the following dynamic system in (µ, Y ):{
µ̇ = ρµ− α

Y

Ẏ = 1
c2

(µ− c1)

Saddle-point. See the phase diagram on Figure 1. The steady state values of µ and

Y are:

µ∗ = c1 (44)

Y ∗∗ =
α

ρc1
(45)

According to (39) and (41), we must have α
Y
≤ λ ≤ α

kY
. Hence this phase begins at T
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(see Eq. (32)), and it ends at Ti defined by:

λ(Ti) =
α

kY (Ti)
(46)

Moreover, according to (40), we have:

xn(T ) =
1− α
α

Y (T )

xn(Ti) =
1− α
α

kY (Ti)

• In the case of an interior solution on a, Eq. (36) reads:

xn = k
(1− α)− a

α
Y (47)

Eqs. (47) and (35) yield:
α

k(1− a)Y
= λ (48)

which implies:

a = 1− α

kλY

Then a ≥ 0 requires α
kY
≤ λ, which shows that this phase begins at Ti (see Eq (46)).

The date at which this phase ends is given by the fact that fossil fuel consumption at

night becomes nil. Then Eq. (47) shows that a = 1− α at the end of this phase, and

Eq. (48) that λ = 1
kY

, showing that this date is T (see Eq. (21)).

Eq. (38) reads:

−kλ = µ̇− ρµ (49)

This equation can be integrated to obtain µ(t) as a function of µ(Ti), Ti, λ(0) and

time, which allows us to obtain I(t) and, by integration, Y (t) as a function of the

same variables and Y (Ti).

• Case of full storage: impossible.

The solution is to use fossil fuel at night only while proceeding with the building of solar

capacity, first without storing and then with storage, progressively increasing from 0 to its

maximal value a∗.

A.4 Respect of the carbon budget

The model is completed by specifying that the total quantity of fossil fuel burned cannot

exceed the carbon budget.
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• Between 0 and T , Eqs (30) and (31) yield:

xn(t) + xd(t) =
1

λ(t)
− Y (t)

• Between T and Ti, xd(t) = 0 and xn(t) is given by Eq. (40):

xn(t) =
1− α
λ(t)

• Between Ti and T , xd(t) = 0 and xn(t) is given by Eqs (35) and (48), which allows us

to eliminate a(t) :

xn(t) =
1

λ(t)
− kY (t)

Hence:

X =

∫ T

0

(xn(t) + xd(t))dt+

∫ Ti

T

xn(t)dt+

∫ T

Ti

xn(t)dt

=

∫ T

0

1

λ(t)
dt− α

∫ Ti

T

1

λ(t)
dt−

∫ T

0

Y (t)dt− k
∫ T

Ti

Y (t)dt

B Intermittency

H = qu (eud , e
u
n) + (1− q)u

(
eld, e

l
n

)
− C(I)− λ

(
q (xud + xun) + (1− q)

(
xld + xln

))
+ µI

L = H+ωuaa
u+ωua(1−au)+ωudx

u
d+ωunx

u
n++ωlaa

l+ωla(1−al)+ωldx
l
d+ωlnx

l
n+ωX

(
X − E(X)

)
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FOC:

α

eud
= λ− ωud

q
,
α

eld
= λ− ωld

1− q
(50)

1− α
eun

= λ− ωun
q
,

1− α
eln

= λ− ωln
1− q

(51)

Y

(
α

eud
− k1− α

eun

)
=
ωua − ωua

q
, Y

(
α

eld
− k1− α

eln

)
=
ωla − ωla
φ(1− q)

(52)

c1 + c2I = µ (53)

λ̇− ρλ = −ωX (54)

µ̇− ρµ = −q
[
(1− au) α

eud
+ kau

1− α
eun

]
− (1− q)φ

[
(1− al) α

eld
+ kal

1− α
eln

]
(55)

to which we add the complementarity slackness conditions.

Before the ceiling, E(X) < X and ωX = 0. Then λ̇/λ = ρ, i.e.:

λ(t) = λ(0)eρt (56)

B.1 No fossil

This phase is necessarily the last one, and it always exists. Let T ≥ 0 be the date at which

this last phase begins. T is also the date at which E(X) = X.

We have xud = xld = 0, xun = xln = 0, ωud > 0, ωld > 0, ωun > 0, ωln > 0, ∀t ≥ T .

The FOC then read:

α

(1− au)Y
= λ− ωud

q
,

α

(1− al)φY
= λ− ωld

1− q
(57)

1− α
kauY

= λ− ωun
q
,

1− α
kalφY

= λ− ωln
1− q

(58)

au − (1− α)

au(1− au)
=
ωua − ωua

q
,
al − (1− α)

al(1− al)
=
ωla − ωla

1− q
(59)

c1 + c2I = µ (60)

λ̇− ρλ = −ωX (61)

µ̇− ρµ = − 1

Y
(62)
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No storage or complete storage impossible because the marginal utility of consumption

would become infinite. Hence the solution is an interior solution on au and al:

a∗u = a∗l = 1− α (63)

Investment in renewables: {
µ̇ = ρµ− 1

Y

Ẏ = 1
c2

(µ− c1)

Dynamic system in (µ, Y ). Saddle-point.

µ∗ = c1 (64)

Y ∗ =
1

ρc1
(65)

Finally,
1

Y
≤ λ,

1

φY
≤ λ,

1

kY
≤ λ and

1

kφY
≤ λ

The last condition is more stringent than the other ones. It therefore provides

λ(T ) =
1

kφY (T )
(66)

Hence the solution in this phase is to store a fraction 1 − α of the electricity produced at

day time to use it at night, whatever the state of nature, and to invest in solar panels to

increase capacity from Y (T ) (to be determined) to Y ∗ = 1/ρc1.

B.2 Fossil night and day in the two states of nature

This phase is necessarily the first one, if it exists.

We have xud > 0, xun > 0, ωud = 0, ωun = 0, xld > 0, xln > 0, ωld = 0, ωln = 0. The FOC read:

α

xud + (1− au)Y
= λ,

α

xld + (1− al)φY
= λ (67)

1− α
xun + kauY

= λ,
1− α

xln + kalφY
= λ (68)

(1− k)λY =
ωua − ωua

q
, (1− k)λY =

ωla − ωla
φ(1− q)

(69)

c1 + c2I = µ (70)

µ̇− ρµ = −q [(1− au) + kau]λ− (1− q)φ
[
(1− al) + kal

]
λ (71)
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With the same arguments than in the variability case, we conclude that there is no storage

in this phase whatever the state of nature: au = al = 0. Then the FOC simplify into:

α

xud + Y
=

α

xld + φY
= λ =⇒ xld = xud + (1− φ)Y with xud =

α

λ
− Y (72)

1− α
xun

=
1− α
xln

= λ =⇒ xun = xln =
1− α
λ

(73)

c1 + c2I = µ (74)

µ̇− ρµ = − [q + (1− q)φ]λ (75)

The two last equations give:{
Ẏ = 1

c2
(µ− c1)

µ̇ = ρµ− [q + (1− q)φ]λ(0)eρt

They can be integrated, to get µ(t) and Y (t).

This phase begins at date 0 and ends at date T .

At the end of this phase,

xud(T ) = 0 and xld(T ) = (1− φ)Y (T ) (76)

Hence:

λ(T ) =
α

Y (T )
(77)

and

xun(T ) = xln(T ) =
1− α
α

Y (T ) (78)

The solution in this phase is to use fossil fuel-fired power plants night and day whatever the

state of nature, but less and less, not to store, and to build up solar capacity, from Y0 to

Y (T ) (to be determined). At the end of this phase, fossil is not used anymore at day in the

good state of nature, but it is still used in the bad state to complement solar.
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B.3 Fossil at night whatever the state of nature, and at day in

the bad state only

We have xud = 0, xun > 0, ωud > 0, ωun = 0, xld > 0, xln > 0, ωld = 0, ωln = 0. The FOC read:

α

(1− au)Y
= λ− ωud

q
,

α

xld + (1− al)φY
= λ (79)

1− α
xun + kauY

= λ,
1− α

xln + kalφY
= λ (80)

Y

(
α

(1− au)Y
− kλ

)
=
ωua − ωua

q
, (1− k)λY =

ωla − ωla
φ(1− q)

(81)

c1 + c2I = µ (82)

µ̇− ρµ = −q
[α
Y

+ kauλ
]
− (1− q)φ

[
(1− al)λ+ kalλ

]
(83)

• In the case of no storage the FOC become:

α

Y
= λ− ωud

q
,

α

xld + φY
= λ =⇒ xld =

α

λ
− φY (84)

1− α
xun

=
1− α
xln

= λ =⇒ xun = xln =
1− α
λ

(85)

α− kλY =
ωua
q
, (1− k)λY =

ωla
φ(1− q)

(86)

c1 + c2I = µ (87)

µ̇− ρµ = −q α
Y
− (1− q)φλ (88)

Hence {
Ẏ = 1

c2
(µ− c1)

µ̇ = ρµ− q α
Y
− (1− q)φλ(0)eρt

To the best of our knowledge there is no analytical solution to this system of differential

equations. We will resort to numerical simulations.

We have α
Y
≤ λ, xld ≥ 0 ⇔ α

λ
− φY ≥ 0 i.e. α

φY
≥ λ, α − kλY ≥ 0 ⇔ λ ≤ α

kY
i.e.,

taking into account the most stringent inequalities:

α

Y
≤ λ ≤

{
α
φY

iff k < φ
α
kY

iff φ < k

– Boundaries of this phase in the case k < φ : this phase begins at T and ends at

Tφ1 such that:

λ(Tφ1) =
α

φY (Tφ1)
(89)
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We also have:

xld(Tφ1) = 0, and xun(Tφ1) = xln(Tφ1) =
1− α
α

φY (Tφ1) (90)

– Boundaries of this phase in the case φ < k : this phase begins at T and ends at

Tk2 such that:

λ(Tk2) =
α

kY (Tk2)
(91)

We also have:

xld(Tk2) = (k − φ)Y (Tk2), and xun(Tk2) = xln(Tk2) =
1− α
α

kY (Tk2) (92)

• If there is interior storage in the good state of nature, the FOC read:

α

(1− au)Y
= λ− ωud

q
,

α

xld + φY
= λ =⇒ xld =

α

λ
− φY (93)

1− α
xun + kauY

=
1− α
xln

= λ =⇒ xln = xun + kauY =
1− α
λ

(94)

kλY =
α

1− au
, (1− k)λY =

ωla
φ(1− q)

(95)

c1 + c2I = µ (96)

µ̇− ρµ = − [qk + (1− q)φ]λ (97)

Hence {
Ẏ = 1

c2
(µ− c1)

µ̇ = ρµ− [qk + (1− q)φ]λ(0)eρt

which can be integrated.

We have α
(1−au)Y ≤ λ i.e. kλ ≤ λ, au ≥ 0 iff α

kY
≤ λ, xld ≥ 0 iff λ ≤ α

φY
, and xun ≥ 0 iff

λ ≤ 1
kY
. The relevant boundaries for this phase are then:

α

kY
≤ λ ≤

{
α
φY

iff k < φ
α

1
kY

iff φ
α
< k

– Boundaries of this phase in the case k < φ
α

:

α

kY
≤ λ ≤ α

φY

Hence the existence of this phase in the case k < φ
α

requires that φ < k. When it
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exists, this phase begins at date Tk2 defined above, and ends at date Tφ2 s.t.

λ(Tφ2) =
α

φY (Tφ2)
(98)

We have:

au(Tφ2) = 1− φ

k

xld(Tφ2) = 0

xun(Tφ2) =

(
φ

α
− k
)
Y (Tφ2), x

l
n(Tφ2) =

1− α
α

φY (Tφ2)

– Boundaries of this phase in the case φ
α
< k :

α

kY
≤ λ ≤ 1

kY

It begins at date Tk2 defined above, and ends at date T̂2 s.t.

λ(T̂2) =
1

kY (T̂2)
(99)

We have:

au(T̂2) = 1− α
xld(T̂2) = (αk − φ)Y (T̂2)

xun(T̂2) = 0, xln(T̂2) = (1− α)kY (T̂2)

• Interior storage in both states of nature: impossible.

To sum up, this phase consists in using fossil fuel-fired power plants at night whatever the

state of nature, and at day only in the bad state of nature, to complement solar, first without

storage and then, if φ < k ≤ φ
α
, with storage at day in the good state of nature, up to 1− φ

k
,

while building solar capacity proceeds.
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B.4 Fossil night and day in the bad state of nature only

We have here xud = xun = 0, xld > 0, xln > 0, ωud > 0, ωun > 0, ωld = ωln = 0, and the FOC

read:

α

(1− au)Y
= λ− ωud

q
,

α

xld + (1− al)φY
= λ (100)

1− α
kauY

= λ− ωun
q
,

1− α
xln + kalφY

= λ (101)

Y

(
α

(1− au)Y
− k1− α

kauY

)
=
ωua − ωua

q
, (1− k)λY =

ωla − ωla
φ(1− q)

(102)

c1 + c2I = µ (103)

µ̇− ρµ = −q 1

Y
− (1− q)φ

[
(1− al) + kal

]
λ (104)

• No storage: impossible.

• Case of an interior solution on au only:

α

(1− au)Y
= λ− ωud

q
,

α

xld + φY
= λ⇒ xld =

α

λ
− φY (105)

1− α
kauY

= λ− ωun
q
,

1− α
xln

= λ⇒ xln =
1− α
λ

(106)

Y

(
α

(1− au)Y
− k1− α

kauY

)
= 0⇒ au = 1− α, (1− k)λY =

ωla
φ(1− q)

(107)

c1 + c2I = µ (108)

µ̇− ρµ = −q 1

Y
− (1− q)φλ (109)

Hence {
Ẏ = 1

c2
(µ− c1)

µ̇ = ρµ− q 1
Y
− (1− q)φλ(0)eρt

To the best of our knowledge there is no analytical solution to this system of differential

equations. We will resort to numerical simulations.

1
Y
≤ λ, 1

kY
≤ λ, xld ≥ 0 ⇐⇒ λ ≤ α

φY
. Hence this phase is only relevant in the case

k ≥ φ
α
. Then, the boundaries of this phase are:

1

kY
≤ λ ≤ α

φY
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Hence this phase begins at T̂2 and ends at Tφ3 s.t.

λ(Tφ3) =
α

φY (Tφ3)
(110)

We have:

xld(Tφ3) = 0

xln(Tφ3) =
1− α
α

φY (Tφ3)

• Case of an interior solution on au and al : impossible.

B.5 Fossil at night only

We have here xud = xld = 0, xun > 0, xln > 0, ωud > 0, ωld > 0, ωun = ωln = 0, and the FOC

read:

α

(1− au)Y
= λ− ωud

q
,

α

(1− al)φY
= λ− ωld

1− q
(111)

1− α
xun + kauY

=
1− α

xln + kalφY
= λ (112)

Y

(
α

(1− au)Y
− kλ

)
=
ωua − ωua

q
, Y

(
α

(1− al)φY
− kλ

)
=
ωla − ωla
φ(1− q)

(113)

c1 + c2I = µ (114)

µ̇− ρµ = −α
Y
− q

[
au + (1− q)φal

]
kλ (115)

• In the case of no storage, the FOC become:

α

Y
= λ− ωud

q
,
α

φY
= λ− ωld

1− q
(116)

1− α
xun

=
1− α
xln

= λ =⇒ xun = xln =
1− α
λ

(117)

Y
(α
Y
− kλ

)
=
ωua
q
, Y

(
α

φY
− kλ

)
=

ωla
φ(1− q)

(118)

c1 + c2I = µ (119)

µ̇− ρµ = −α
Y

(120)

Hence: {
µ̇ = ρµ− α

Y

Ẏ = 1
c2

(µ− c1)
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Dynamic system in (µ, Y ). Saddle-point. Steady state:

µ∗ = c1 (121)

Y ∗∗ =
α

ρc1
(122)

Moreover, α
Y
≤ λ, α

φY
≤ λ, λ ≤ α

kY
and λ ≤ α

kφY
. Taking the more stringent of these

conditions we get the boundaries of this phase:

α

φY
≤ λ ≤ α

kY

Hence the existence of this phase requires that k < φ. When this condition is satisfied,

this phase begins at Tφ1 and ends at Tk1 s.t.

λ(Tk1) =
α

kY (Tk1)
(123)

We have:

xun(Tk1) = xln(Tk1) =
1− α
α

kY (Tk1) (124)

• Case of an interior solution on au only:

α

(1− au)Y
= λ− ωud

q
,
α

φY
= λ− ωld

1− q
(125)

1− α
xun + kauY

=
1− α
xln

= λ =⇒ xln = xun + kauY =
1− α
λ

(126)

α

(1− au)Y
= kλ =⇒ au = 1− α

kλY
,
α

φ
− kλY =

ωla
φ(1− q)

(127)

c1 + c2I = µ (128)

µ̇− ρµ = −(1− q)α
Y
− qkλ (129)

Hence {
Ẏ = 1

c2
(µ− c1)

µ̇ = ρµ− (1− q) α
Y
− qkλ(0)eρt

To the best of our knowledge there is no analytical solution to this system of differential

equations. We will resort to numerical simulations.

α
φY
≤ λ, au ≥ 0⇐⇒ α

kY
≤ λ, xun ≥ 0⇐⇒ λ ≤ 1

kY
, α
φ
− kλY ≥ 0⇐⇒ λ ≤ α

kφY
. Hence

the boundaries of this phase are:{
α
kY

if k < φ
α
φY

if φ < k
≤ λ ≤

{
α
kφY

if α < φ
1
kY

if φ < α
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– In the case k < φ and α < φ, this phase begins at Tk1 and ends at Tkφ1 s.t.

α

kφY (Tkφ1)
= λ(Tkφ1)

– In the case k < φ < α, this phase begins at Tk1 and ends at T̂1 s.t.

1

kY (T̂1)
= λ(T̂1)

– In the case φ/α < k, this phase does not exist

In the case α < φ < k < φ/α, this phase begins at Tφ2 and ends at Tkφ1

– In the case φ < k < φ/α and φ < α, this phase begins at Tφ2 and ends at T̂1

• In the case of an interior solution on au and al, the FOC read:

α

(1− au)Y
= λ− ωud

q
,

α

(1− al)φY
= λ− ωld

1− q
(130)

1− α
xun + kauY

=
1− α

xln + kalφY
= λ =⇒ xln = xun + k(au − alφ)Y and xun =

1− α
λ
− kauY

(131)

α

(1− au)Y
=

α

(1− al)φY
= kλ =⇒ au = 1− α

kλY
and al =

1

φ
[au − (1− φ)] = 1− α

kφλY

(132)

c1 + c2I = µ (133)

µ̇− ρµ = − [q + (1− q)φ] kλ (134)

Hence {
Ẏ = 1

c2
(µ− c1)

µ̇ = ρµ− [q + (1− q)φ] kλ(0)eρt

which can be integrated.

With the values of au and al, the second equation yields:

xln = xun + k(1− φ)Y =
1

λ
− kφY and xun =

1

λ
− kY (135)

We must have au, al ≥ 0. Hence α
kY
≤ λ and α

kφY
≤ λ. Similarly, we must have

xun, x
l
n ≥ 0. Hence λ ≤ 1

kY
and λ ≤ 1

kφY
. Taking the most stringent of these conditions,

we get the boundaries of this phase:

α

kφY
≤ λ ≤ 1

kY
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The condition of existence of this phase is therefore α < φ. This phase begins at Tkφ1
and ends at T̂3 s.t.

1

kY (T̂3)
= λ(T̂3)

We have:

au(T̂3) = 1− α and al(T̂3) = 1− α

φ

xun(T̂3) = 0, xln = k(1− φ)Y (T̂3)

• Case of full storage: impossible.

B.6 Fossil at night only, in the bad state only

We have here xud = xld = 0, xun = 0, xln > 0, ωud > 0, ωld > 0, ωun > 0, ωln = 0, and the FOC

read:

α

(1− au)Y
= λ− ωud

q
,

α

(1− al)φY
= λ− ωld

1− q
(136)

1− α
kauY

= λ− ωun
q
,

1− α
xln + kalφY

= λ (137)

au − (1− α)

au(1− au)
=
ωua − ωua

q
, Y

(
α

(1− al)φY
− kλ

)
=
ωla − ωla
φ(1− q)

(138)

c1 + c2I = µ (139)

µ̇− ρµ = −q 1

Y
− (1− q)α

Y
− (1− q)φkalλ (140)

• No storage at day in the good state of nature: impossible.

• Storage in the good state, no storage in the bad one:

α

(1− au)Y
= λ− ωud

q
,
α

φY
= λ− ωld

1− q
(141)

1− α
kauY

= λ− ωun
q
,

1− α
xln

= λ (142)

au = 1− α, α
φ
− kλY =

ωla
φ(1− q)

(143)

c1 + c2I = µ (144)

µ̇− ρµ = − [q + (1− q)α]
1

Y
(145)
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Hence {
Ẏ = 1

c2
(µ− c1)

µ̇ = ρµ− [q + (1− q)α] 1
Y

which can be integrated. Saddle-point.....

Boundaries of this phase: 1
Y
≤ λ, α

φY
≤ λ, 1

kY
≤ λ, α

kφY
≥ λ, i.e.{

1
kY

if k < φ
α

α
φY

if φ
α
< k

≤ λ ≤ α

kφY

Hence a necessary condition of existence of this phase, when k > φ
α
, is φ < α. This

phase begins at T̂1 or Tφ3 and ends at Tkφ2 s.t.

α

kφY (Tkφ2)
= λ(Tkφ2)

We have:

au(Tkφ2) = 1− α and al(Tkφ2) = 0

xun(Tkφ2) = 0, xln(Tkφ2) =
1− α
α

kφY (Tkφ2)

• Interior storage whatever the state of nature:

α

(1− au)Y
= λ− ωud

q
,

α

(1− al)φY
= λ− ωld

1− q
(146)

1− α
kauY

= λ− ωun
q
,

1− α
xln + kalφY

= λ (147)

au = 1− α, α

(1− al)φY
= kλ =⇒ al = 1− α

kφλY
(148)

c1 + c2I = µ (149)

µ̇− ρµ = −q 1

Y
− (1− q)φkλ (150)

Hence {
Ẏ = 1

c2
(µ− c1)

µ̇ = ρµ− q 1
Y
− (1− q)φkλ(0)eρt

To the best of our knowledge there is no analytical solution to this system of differential

equations. We will resort to numerical simulations.

Boundaries for this phase: 1
Y
≤ λ, 1

kY
≤ λ, al ≥ 0⇐⇒ λ ≥ α

kφY
, xln = 1−α

λ
− kalφY =
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1
λ
− kφY ≥ 0⇐⇒ 1

kφY
≥ λ. Hence{

1
kY

if α < φ
α
kφY

if φ < α
≤ λ ≤ 1

kφY

– In the case α < φ, this phase begins at T̂3 and ends at T .

– In the case φ < α, this phase begins at T̂kφ2 and ends at T .
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