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1. Introduction

This paper studies continuous-time econometric models of dynamic discrete choice games.
Recent interest in continuous time dynamic games by Doraszelski and Judd (2012) and
Arcidiacono, Bayer, Blevins, and Ellickson (2016) (henceforth ABBE) and others was
motivated by their ability to allow researchers to compute and estimate more realistic, large-
scale games and to carry out a wide array of complex counterfactual policy experiments
which were previously infeasible due to either computational or theoretical limitations.

The goals of this paper are to extend several existing results for the ABBE model.
Specifically, we generalize existing equilibrium characterizations, verify the identification
conditions for specific models, examine the computational properties of the model, and
study the small sample performance of the proposed two-step semiparametric estimator
for the model parameters when only discrete time data are available. Our results build
on the large body of work on the theoretical, computational, and econometric properties
of discrete-time dynamic games as well as the recent theoretical and applied work using
continuous time dynamic games. They also relate to the mathematical literature on
continuous time stochastic processes and to work in linear algebra on matrix exponentials
and matrix logarithms.

Modeling economic processes in continuous time dates back at least several decades
and includes work in time series econometrics by Phillips (1972, 1973), Sims (1971), Geweke
(1978), and Geweke, Marshall, and Zarkin (1986). For longitudinal models, Heckman and
Singer (1986) promoted using continuous time models instead of discrete time models
and put forward two main arguments for doing so. First, for most economic models there
is typically not a natural, fixed time interval at which agents make decisions. Allowing
agents to make decisions at (possibly unknown and stochastic) points in continuous time
can be both more natural and easier computationally. Second, even if there is a compelling
reason to use a model in which agents make decisions at fixed time intervals, there is no
reason that this decision interval should coincide exactly with the interval at which the
researcher observes or samples the process, which is typically annually or quarterly. While
standard dynamic discrete choice models have a different functional forms when applied
to different time intervals, continuous time models are invariant to the interval at which
observations are recorded.

Despite this early work on continuous time models, discrete time dynamic discrete
choice models are currently the de facto standard and now have a long, successful history
in structural applied microeconometrics starting with the pioneering work of Gotz and
McCall (1980), Miller (1984), Pakes (1986), Rust (1987), and Wolpin (1984). A recent series of
papers (Aguirregabiria and Mira, 2007; Bajari, Benkard, and Levin, 2007; Pakes, Ostrovsky,
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and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008) have shown how to extend
two-step estimation techniques, originally developed by Hotz and Miller (1993) and Hotz,
Miller, Sanders, and Smith (1994) in the context of single-agent dynamics, to more complex
multi-agent settings. The computation of multi-agent models remains formidable, despite
a growing number of methods for solving for equilibria (Pakes and McGuire, 1994, 2001;
Doraszelski and Satterthwaite, 2010).

Dynamic decision problems are naturally high-dimensional and the computational
challenges involved are even greater in the context of strategic games, where, traditionally,
the simultaneous actions of players introduces a further dimensionality problem. In order
to solve for optimal policies, one must calculate players’ expectations over all combinations
of actions of their rivals. The cost of computing these expectations grows exponentially
in the number of players, making it difficult or impossible to compute the equilibrium in
many economic environments. This unfortunate reality has severely limited the scale and
the degree of heterogeneity in applied work using these methods.

Because of these limitations some authors have recently considered continuous time
models which more closely reflect the nature and timing of actions by agents in the models
while also reducing the computational burden. Doraszelski and Judd (2012) showed that
continuous-time dynamic games have desirable computational properties, significantly
decreasing the computational burden required to evaluate the Bellman operator, which can
be used to compute equilibria. ABBE demonstrated the empirical tractability of continuous-
time games, particularly for applications in industrial organization. They proposed an
econometric model which still benefits from the computational aspects of continuous time
models but more closely parallels the discrete choice features of discrete time models.
They proposed a two-step conditional choice probability (CCP) estimator for their model,
thus connecting continuous time games with a long line of work on estimation of discrete
time dynamic games. They showed that it is feasible to estimate even extremely large-scale
games, but that it is also now possible to carry out counterfactuals in those games, which
would have been computationally prohibitive in a simultaneous-move discrete time model.
ABBE demonstrated these advantages in the context of an empirical application which
analyzed the entry, exit, expansion, contraction of grocery chain stores in urban markets
throughout the United States from 1994–2006 with a particular focus on the effects of
Walmart’s entry into this sector.

The ABBE model was developed to make estimation of large-scale models in industrial
organization feasible along with counterfactual simulations using those models. Similar
continuous time models have subsequently been used in several applications including
Schiraldi, Smith, and Takahashi (2012) to supermarkets in the U.K., Lee, Roberts, and
Sweeting (2012) to baseball tickets, Nevskaya and Albuquerque (2012) to online games,
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Jeziorski (2013) to the U.S. radio industry, and Cosman (2014) to bars in Chicago.
In addition to expanding on identification and estimation of the model, we use the

ABBE model to carry out a series of Monte Carlo experiments. In solving for an equilibrium
of a quality ladder model similar to that of Ericson and Pakes (1995), the computational
time required is many orders of magnitude smaller than for a comparable discrete time
game. A proposed two-step estimator is shown to provide additional computational gains
even in the continuous time setting, where it is again orders of magnitude faster than the
full solution estimator.

The remainder of this paper is organized as follows. In Section 2, we review a
generalized version of the ABBE model that permits additional heterogeneity in the form
of firm-specific discount rates and move arrival rates that may vary by firm and state.
We establish a linear representation of the value function in terms of CCPs as well as the
existence of a Markov perfect equilibrium in the more general model. We then develop
new identification results for the model in Section 3 and show how to estimate the model
using ideas from several widely-used approaches for estimating discrete time dynamic
games in Section 4. We use two canonical examples throughout the paper to illustrate
our results: a single agent renewal model based on Rust (1987) and a 2× 2 entry model
similar to example models used by Aguirregabiria and Mira (2007), Pesendorfer and
Schmidt-Dengler (2008), and others. In Section 5 we introduce a third example: a quality
ladder model of oligopoly dynamics based on the model of Ericson and Pakes (1995).
Finally, in Section 6 we provide Monte Carlo evidence of the small sample performance of
the estimator proposed by ABBE and demonstrate that the computational performance of
the proposed methods is dramatically improved relative to the discrete time counterpart.

2. A Continuous Time Dynamic Discrete Choice Game with Stochastically
Sequential Moves

We consider infinite horizon games in continuous time indexed by t ∈ [0, ∞) with N
players indexed by i = 1, . . . , N. The model we introduce is a heterogeneous generalization
of the ABBE model where firms may have different discount rates and where the move
arrival rates may differ by firm and across states. After formalizing the components of
the structural model, we establish a linear representation of the value function in terms of
conditional choice probabilities, as in Pesendorfer and Schmidt-Dengler (2008) and ABBE,
as well as existence of a Markov perfect equilibrium in the more general model. We then
show that the model yields a reduced form characterized by finite-state continuous-time
Markov jump processes and discuss an alternative “clock process” that yields a convenient
discrete time Markov process representation with desirable computational properties. We
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conclude with a comparison of discrete- and continuous-time models.

2.1. The Structural Model and Basic Assumptions

State Space At any instant, the payoff-relevant market conditions that are common knowl-
edge to all players can be summarized by a state vector x, which is a member of a finite
state space X with K = |X | < ∞. The states x ∈ X are typically represented as vectors of
real numbers in a finite-dimensional Euclidean space. For example, x = (x0, x1, . . . , xN)

where the components xi are player-specific states for i = 1, . . . , N, such as the number
of stores operated by a retail chain, and x0 is an exogenous market characteristic, such as
population.

Because the state space is finite there is an equivalent, encoded state space representation
K = {1, . . . , K}. We will use K throughout most of the paper, as it allows us to vectorize
payoffs, value functions, and other quantities, but X is typically the most natural way to
represent the state of the market.

Endogenous State Changes Player i makes decisions in state k at random times which occur
according to a Poisson process with rate λik. That is, at any point in time and in any state
k the holding time τi until the next move by player i is exponentially distributed with rate
parameter λik. We assume these processes are independent across players, that the rates
λik are known to the researcher, and that λik < ∞ for all i and k reflecting the fact that
monitoring the state is costly and so continuous monitoring (λik = ∞) is infeasible.

When a move arrival for firm i occurs, it chooses one of J + 1 actions in the choice
set J = {0, 1, 2, . . . , J}. Endogenous state changes are induced by the actions of players.
When player i makes some action j > 0 in state k, the state jumps immediately and
deterministically from k the continuation state l(i, j, k). By definition, the action j = 0 for
each player represents inaction and so the continuation state is l(i, 0, k) = k for all players
i and states k.

We now introduce two examples which we will return to throughout the paper to
illustrate other assumptions and results.

Example 1 (Single-Agent Renewal Model). Consider a continuous-time version of the
single-agent renewal model of Rust (1987). There is a single agent in this model, the
manager of a bus company, so N = 1. The only state variable in the model is the
accumulated mileage of a bus engine, so the state space can be represented as K =

{1, . . . , K}. Suppose the manager decides whether or not to replace a bus engine (J1 = 1)
at a rate λ, which is constant across states. When a decision is made, the choice set is
J = {0, 1}. Importantly, this does not imply that the individual rates of replacement and
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non-replacement are constant. There is a single agent in this model (N = 1)

Example 2 (2× 2 Entry Model). Consider a simple two-player entry game with a binary
exogenous state variable. Each firm i ∈ {1, 2} has two actions j ∈ {0, 1}. The exogenous
state represents the level of demand, which can either be high or low. The state vector x
has three components: x1 and x2 are activity indicators for firms 1 and 2 and the level of
demand is represented by x3 ∈ {L, H}. Therefore, in vector form the state space is

X = { (0, 0, L), (1, 0, L), (0, 1, L), (1, 1, L),
(0, 0, H), (1, 0, H), (0, 1, H), (1, 1, H) }

In encoded form, the state space is simply K = {1, 2, 3, 4, 5, 6, 7, 8}.

Payoffs At each move arrival in state k, player i also observes a vector ε ik = (ε i0k, . . . , ε i Jk)
>

of choice-specific variables. These variables are private information of firm i. All firms and
the researcher observe the state k (and hence, xk), but only firm i observes ε ik.

In discrete time models, because the actions and state changes effectively resolve at
the same time, the period payoffs are defined to be functions of the actions of all firms,
the state, and the unobservables. In our continuous-time model, the payoffs resulting
from competition in the product market accrue as flows while the choice-specific payoffs
(e.g., entry costs) accrue all at once. Therefore, we distinguish between the flow payoffs,
denoted uik, and the instantaneous choice-specific payoffs, denoted ψijk. Importantly, the
choice-specific payoffs can depend on the market structure because they are indexed by k.

Exogenous State Changes In addition to move arrivals, a second type of event that can occur
are exogenous state transitions attributed to nature (i = 0). When the model is in state
k, let q0kl denote the rate at which transitions to state l 6= k occur. The rate q0kl may be
zero if the transition is not possible, or it may be some positive but finite value. Therefore,
the overall rate at which the system leaves state k is ∑K

l 6=k q0kl . Accordingly, we define
q0kk = −∑K

l=1 q0kl . The individual elements q0kl for k 6= l are usually specified by the
researcher to depend on a lower-dimensional vector of parameters θ.

Example 1, Continued. Suppose the exogenous state transition process is characterized
by two rate parameters q1 and q2 governing one- and two-state mileage jumps. The agent
faces a cost minimization problem where the flow utility uik is the cost of operating a bus
with mileage k. Upon continuation, no cost is paid but a fixed amount is paid to replace
the engine:

ψijk =

0 if j = 0,

−c if j = 1.
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Upon continuation the state does not change but upon replacement the state jumps
immediately to k = 1:

l(i, j, k) =

k if j = 0,

1 if j = 1.

Following either choice, the agent receives an iid shock ε ijk.

Assumptions Before turning to the equilibrium, we pause and collect our assumptions so
far.

Assumption 1 (Discrete States). The state space is finite: K = |X | < ∞.

Assumption 2 (Discount Rates). The discount rates ρi > 0 are known for all i = 1, . . . , N.

Assumption 3 (Move Arrival Rates). The rates of move arrivals and exogenous state
changes are strictly positive and bounded: for i = 1, . . . , N and k = 1, . . . , K, 0 < λik < ∞
and 0 ≤ q0kl < ∞ for all l 6= k.

Assumption 4 (Bounded Payoffs). The flow payoffs and choice-specific payoffs satisfy
|uik| < ∞ and

∣∣ψijk
∣∣ < ∞ for all i = 1, . . . N, j = 0, . . . , J, and k = 1, . . . , K.

Assumption 5 (Additive Separability). The instantaneous payoffs are additively separable
as ψijk + ε ijk.

Assumption 6 (Distinct Actions). For all i = 1, . . . , N and k = 1, . . . , K:

(a) l(i, j, k) = k and ψijk = 0 for j = 0,

(b) l(i, j, k) 6= l(i, j′, k) for all j = 0, . . . , J and j′ 6= j.

Assumption 7. The choice-specific shocks ε ik are iid over time and across choices with
a known joint distribution Fik which is absolutely continuous with respect to Lebesgue
measure (with joint density fik), has finite first moments, and has support equal to RJ+1.

Assumptions 1–7 are generalized counterparts of Assumptions 1–4 of Arcidiacono,
Bayer, Blevins, and Ellickson (2016) that allow for firm heterogeneity and state dependent
rates. The first part of Assumption 6 defines j = 0 to be the inaction choice, which does
not change the state, and normalizes the corresponding instantaneous payoff to zero.1 The
second part of Assumption 6 requires actions j > 0 to be meaningfully distinct in the ways
they change the state. This serves to rule out cases where two actions are indistinguishable.

1The role of the choice j = 0 is similar to the role of the “outside good” in models of demand. Because not
all agents in the market are observed to purchase one of the goods in the model, their purchase is defined to
be the outside good.
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Strategies, Best Responses, and Dynamic Payoffs A stationary Markov policy for player i is a
function δi : K×RJ+1 → J : (k, ε ik) 7→ δi(k, ε ik) which assigns to each state k and vector
ε ik an action from J . For a given policy function δi, we can define the conditional choice
probabilities

(1) σijk = Pr[δi(k, ε ik) = j | k]

for all choices j and states k. Let ςi denote player i’s beliefs regarding the actions of rival
players, given by a collection of (N − 1)× (J + 1)× K probabilities ςimjk for each rival
player m 6= i, state k, and choice j. Finally, let Vik(ςi) denote the expected present value for
player i being in state k and behaving optimally at all points in the future given beliefs ςi.
For given beliefs ςi, the optimal policy rule for player i satisfies the following inequality
condition:

(2) δi(k, ε ik) = j ⇐⇒ ψijk + ε ijk + Vl(i,j,k)(ςi) ≥ ψij′k + ε ij′k + Vl(i,j′,k)(ςi) ∀j′ ∈ J .

That is, at each decision time δi assigns the action that maximizes the agent’s expected
future discounted payoff.

Given beliefs ςi held by player i, we can define the value function (here, a K-vector)
Vi(ςi) = (Vi1(ςi), . . . , ViK(ςi))

> where the k-th element Vik(ςi) is the present discounted
value of all future payoffs obtained when starting in some state k and behaving optimally in
future periods given beliefs ςi. For small time increments h, under the Poisson assumption,
the probability of an event with rate λik occurring is λikh. Given the discount rate ρi, the
discount factor for such increments is 1/(1 + ρih). Thus, for small time increments h the
present discounted value of being in state k is (omitting the dependence on ςi for brevity):

Vik =
1

1 + ρih

[
uikh + ∑

l 6=k
q0klhVil + ∑

m 6=i
λmkh

J

∑
j=0

ςimjkVi,l(m,j,k)

+λikh E max
j

{
ψjk + ε ijk + Vi,l(i,j,k)

}
+

(
1−

N

∑
i=1

λikh−∑
l 6=k

q0klh

)
Vik + o(h)

]
.

Rearranging and letting h → 0, we obtain the following recursive expression for Vik for
beliefs ςi:

(3)

Vik =
uik + ∑l 6=k q0klVil + ∑m 6=i λmk ∑J

j=0 ςimjkVi,l(m,j,k) + λik E maxj{ψijk + ε ijk + Vi,l(i,j,k)}
ρi + ∑l 6=k q0kl + ∑N

i=1 λik
.

The denominator contains the sum of the discount factor and the rates of all events
that might possibly change the state. The numerator is composed of the flow payoff
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for being in state k, the rate-weighted values associated with exogenous state changes,
the rate-weighted values associated with states that occur after moves by rival players,
and the expected current and future value obtained when a move arrival for player
i occurs in state k. The expectation is with respect to the joint distribution of ε ik =

(ε i0k, . . . , ε i Jk)
>. Alternatively, and perhaps more intuitively, rearranging once again shows

that the instantaneous discounted increment to the value function Vik for given beliefs ςi is

(4) ρVik = uik + ∑
l 6=k

q0kl(Vil −Vik) + ∑
m 6=i

λmk

J

∑
j=0

ςimjkVi,l(m,j,k)

+ λik E max
j
{ψijk + ε ijk + Vi,l(i,j,k) − Vik}.

Example 1, Continued. In the renewal model, the value function can be expressed very
simply as follows (where the i subscript has been omitted since N = 1):

Vk =
1

ρ + q1 + q2 + λ
(uk + q1Vk+1 + q2Vk+2 + λ E max {ε0k + Vk,−c + ε1k + V1}) .

Example 2, Continued. In the 2× 2 entry model, the value function for player 1 in state
k, where xk = (xk1, xk2, xk3) ∈ {0, 1} × {0, 1} × {L, H}, can be expressed recursively as

V1k =
1

ρ1 + γxk3 + h1k + h2k

(
u1k + γxk3V1,l(0,xk3,k) + h1kVi,l(1,1−xk1,k) + h2kVi,l(2,1−xk2,k)

)
.

Linear Representation of the Value Function It will be convenient to express the Bellman equation
in (3) in matrix notation, representing the Bellman operator, which we denote by Γ. Let
Σi(σi) denote the transition matrix implied by the choice probabilities σi for player i and
the continuation state function l(i, ·, ·). That is, the (k, l) element of the matrix Σi(σi) is
the probability of transitioning from state k to state l as a result of an action by player
i under the given choice probabilities. For player i’s rivals, Σm(ςim) is the transition
matrix induced by the actions of rival player m according to the beliefs of player i given
by ςim. Let Q0 = (q0kl) denote the matrix of rates of exogenous state transitions and
let Q̃0 = Q0 − diag(q011, . . . , q0KK) be the matrix formed by taking Q0 and replacing the
diagonal elements with zeros. Finally, define ςii to be the best response probabilities under
the beliefs in ςi about rival players.

Then, we can write the Bellman operator Γi (for given beliefs ςi) as

(5) Γi(Vi) = Di

[
ui + Q̃0Vi + ∑

m 6=i
LmΣm(ςim)Vi + Li {Σi(ςii)Vi + Ci(ςii)}

]
,

where Di = (dkl) is the K×K diagonal matrix containing the denominator of (3) for each k,
hence dkk = 1/(ρi + ∑N

m=1 λmk + ∑l 6=k q0kl), Lm = diag(λm1, . . . , λmK) is a diagonal matrix
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containing the rates of decision times for player m, Ci(ςii) is the K× 1 vector containing
the ex-ante expected value of the instantaneous payoff cijk = ψijk + ε ijk for player i in
each state k given the best response probabilities ςii. That is, k-th element of Ci(ςii) is

∑j ςiijk
[
ψijk + eijk(ςii)

]
, where eijk(ςii) is the expected value of ε ijk given that action j is

chosen:

eijk(ςii) ≡
1

ςiijk

∫
ε ijk · 1

{
ε ij′k − ε ijk ≤ ψijk − ψij′k + Vi,l(i,j,k) −Vi,l(i,j′,k) ∀j′

}
f (ε ik) dε ik.

Hence, the value function Vi corresponding to beliefs ςi is a fixed point of Γi, Vi = Γ(Vi).
A central result of Arcidiacono, Bayer, Blevins, and Ellickson (2016) showed that the

differences in choice-specific value functions which appear in the definition of eijk(ςii)

above are identified as functions of the conditional choice probabilities. This result
generalizes to the present setting as well:

Lemma 1 (ABBE, 2016, Proposition 2). Under the maintained assumptions, for each player
i = 1, . . . , N, each state k = 1, . . . , K, and each choice j ∈ J the choice-specific value function is
identified up to differences with respect to some baseline choice j′ ∈ J :

(6) vijk ≡ (ψijk + Vi,l(i,j,k))− (ψij′k −Vi,l(i,j′,k)).

This is a continuous time analog of a similar result of Hotz and Miller (1993, Proposition
1). We build on this result to establish the following linear representation of the value
function in terms of conditional choice probabilities, rate parameters, and payoffs. This
representation generalizes Proposition 6 of ABBE and forms the basis of the identification
results below and the estimator implemented in the Monte Carlo experiments. It is
analogous to a similar result for discrete time games by Pesendorfer and Schmidt-Dengler
(2008, eq. 6).

Theorem 1. If Assumptions 1–7 hold, then for a given collection of beliefs σ = (σ1, . . . , σN), Vi

has the following linear representation for each i:

(7) Vi(σ) = Ξ−1
i (σ) [ui + LiCi(σi)]

where

(8) Ξi(σ) = ρi IK +
N

∑
m=1

Lm[IK − Σm(σm)]−Q0

is a nonsingular K× K matrix and IK is the K× K identity matrix.

Proof. See Appendix A.
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Equilibrium Following the literature, we focus on Markov perfect equilibria which are
defined as follows.

Definition. A Markov perfect equilibrium is a collection of stationary policy rules {δi}N
i=1

such that (2) holds for all i, k, and ε ik given beliefs ςi = (σ1, . . . , σN) generated by (1).

ABBE proved that such an equilibrium exists when players share common move arrival
and discount rates and when the move arrival rates do not not vary across states (i.e.,
λik = λ and ρi = ρ for all i and k). The following theorem extends this to the more general
model with heterogeneity.

Theorem 2. If Assumptions 1–7 hold, then a Markov perfect equilibrium exists.

Proof. See Appendix A.

2.2. Reduced Form Markov Jump Processes Representation

We now turn to focus on certain features of the reduced form of the model to provide some
intuition. The reduced form of the models we consider is a Markov jump process on a finite
state space X ⊂ RL with K = |X | < ∞. Each element x ∈ X represents a possible state
of the market and contains information about the market structure (e.g., which firms are
active, the quality of each firm) and market conditions (e.g., demographic and geographic
characteristics, input prices). The components of x can be player-specific states, such as
the number of stores operated by a retail chain, or exogenous market characteristics, such
as population.

As in discrete time games, the players in our model can make actions and these actions
influence the evolution of the market-wide state vector. These actions typically only affect
certain individual components of the overall state vector. For example, when a new firm
enters it may change the firm-specific activity indicator for that firm but not the population
of the market. We also designate one player, indexed by i = 0, as “nature”. This player is
responsible for state changes that cannot be attributed to the action of any other player
i > 0 (e.g., changes in population or per capita income).

The state space dynamics implied by the model can be characterized by a finite state
Markov jump processes, a stochastic process Xt indexed by t ∈ [0, ∞) taking values in
some finite state space X . If we begin observing this process at some arbitrary time t and
state Xt, it will remain in this state for a duration of random length τ before transitioning to
some other state Xt+τ. The length of time τ is referred to as the holding time. A trajectory
or sample path of such a process is a piecewise-constant, right-continuous function of time.
This is illustrated in Figure 1, where a sample path xt for t ∈ [0, T] is plotted along with
corresponding jump times tn and holding times τn, with n denoting the n-th jump.
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Figure 1. Markov jump process

A representative sample path xt for t ∈ [0, ∞) with jump times tn and holding times τn shown for n = 1, 2, 3, 4.

Jumps occur according to a Poisson process and the holding times between jumps are
therefore exponentially distributed. The mean of this distribution is 1/λ, the inverse of
the rate parameter, λ.

Before proceeding, we first review some fundamental properties of Markov jump
processes, presented without proof. For details see Karlin and Taylor (1975, Section 4.8) or
Chung (1967, part II).

A finite Markov jump process can be summarized by it’s intensity matrix, also known
as the infinitesimal generator matrix,

Q =


q11 q12 . . . q1K

q21 q22 . . . q2K
...

...
...

...
qK1 qK2 . . . qKK


where for k 6= l

qkl = lim
h→0

Pr (Xt+h = l | Xt = k)
h

is the probability per unit of time that the system transitions from state k to state l and the
diagonal elements

qkk = −∑
l 6=k

qkl
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are the negations of the rates at which the system leaves each state k. Thus, the holding
times before transitions out of state k follow an exponential distribution with rate parameter
−qkk. Then, conditional on leaving state k, the system transitions to state l 6= k with
probability qkl/ ∑l 6=k qkl = −qkl/qkk.

In the leading case we consider, the times at which actions are taken are not observed
by the econometrician. In fact, the actions themselves are not observed either and must be
inferred from observed state changes (e.g., we might say the “entry” action occurs when
the number of stores a firm has changes from zero to one). With discrete time data, the
state changes themselves are not directly observable either. With regularly-sampled data
(e.g., annual or quarterly data) only the states at the beginning and end of each period
of length ∆ are observed. We cannot determine the exact sequence of actions from the
observed state change over the period without additional assumptions (e.g., a firm might
enter and exit in a single period, which would be undetected). However, we can make
probabilistic statements about the likelihood of any particular transition occurring over an
interval of given length using the transition matrix, which we will denote as P(∆). This
matrix will be used to relate the model to the data for estimation.

Let Pkl(∆) = Pr(Xt+∆ = l | Xt = k) denote the probability that the system is in state
l after a period of length ∆ given that it was initially in state k. The transition matrix
P(∆) = (Pkl(∆)) is the corresponding K × K matrix of these probabilities. For a finite-
state continuous time Markov jump processes, the Kolmogorov forward equations form
a system of matrix differential equations characterizing the transition matrix P(∆) of a
process with intensity matrix Q (Karlin and Taylor, 1975, 4.8):

P′(∆) = QP(∆), P(0) = I.(9)

It follows that the unique solution to this system is

(10) P(∆) = exp(∆Q) =
∞

∑
j=0

(∆Q)j

j!
.

The transition matrix is the matrix exponential of the intensity matrix Q scaled by ∆. This
is the matrix analog of the scalar exponential exp(x) for x ∈ R.2

Finally, we review some properties of the exponential distribution which will be
required for constructing the value functions in the dynamic games considered below.
In particular, we note that if there are N competing Poisson processes (or exponential
distributions) with rates λi for i = 1, . . . , N, then distribution of the minimum wait time

2Although we cannot calculate the infinite sum (10) exactly, we can compute exp(∆Q) numerically using
known algorithms implemented, for example, in the Fortran package Expokit (Sidje, 1998) or the expm

command in Matlab.
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is exponential with rate parameter ∑N
i=1 λi. Furthermore, conditional on an arrival the

probability that it is due to process i is λi/ ∑N
j=1 λj. These properties are well known, but

we present the following lemma for completeness.

Lemma 2. Suppose τi ∼ Expo(λi), for i = 1, . . . , N, are independent and define τ ≡ mini τi and
ι ≡ arg mini τi. Then

τ ∼ Expo(λ1 + · · ·+ λN) and Pr(ι = i) =
λi

∑N
j=1 λj

.

Proof. See Appendix A.

This lemma allows us to treat the N competing Poisson processes (τ1, . . . , τN) as a
single joint process (τ, ι) where the joint distribution is given above. In the context of
the dynamic games we consider, we can apply this proposition to decompose the state
transition process at two levels. Consider a game currently in state k with N players. The
first branching occurs at the player level, to determine which player moves next. If N
players move at rates λ1k, . . . , λNk in state k, then the overall rate of some player moving
is ∑N

i=1 λik and the probability that player i moves next is λik/ ∑N
i=1 λik. The second level

of branching occurs at the action level: conditional on a particular player moving, which
action is chosen? Suppose player i plays each action j ∈ {0, 1, . . . , J} in state k at rate
hijk. The sum of the individual action rates for player i in state k, ∑J

j=1 hijk, must equal
the overall rate of actions in state k, λik. Conditional on player i making some action, the
probability that action j is made is hijk/λik.

In the notation of the lemma, we can let ι denote a player-action pair (i, j) and τ denote
the holding time until the next action by any player occurs in state k. The distribution
of τ is exponential with rate parameter ∑N

i=1 λik = ∑N
i=1 ∑J

j=0 hijk and the probability that

ι = (i, j) is hijk/
(

∑N
i=1 ∑J

j=0 hijk

)
.

Now, in the context of the dynamic games we consider, the state space dynamics
can be fully characterized by a collection of N + 1 competing Markov jump processes
with intensity matrices Q0, Q1, . . . , QN . Each process corresponds to some player i and
i = 0 denotes nature, to which we will attribute exogenous state changes. The aggregate
intensity matrix, Q, is simply the sum of the player-specific intensity matrices: Q =

Q0 + Q1 + . . . , QN .

Example 1, Continued. Consider the Q matrix implied by the continuous-time single-
agent renewal model. The state variable in the model is the total accumulated mileage of a
bus engine, K = {1, . . . , K}. The exogenous state transition process is characterized by a
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K× K intensity matrix Q0 on K with two parameters γ1 and γ2:

Q0 =



−γ1 − γ2 γ1 γ2 0 · · · 0
0 −γ1 − γ2 γ1 γ2 · · · 0
...

...
. . .

...
...

...
0 0 . . . −γ1 − γ2 γ1 γ2

0 0 . . . 0 −γ1 − γ2 γ1 + γ2

0 0 . . . 0 0 0


.

Let σ1k denote the probability of replacement in state k. We will discuss how these
probabilities are determined in detail below, but for now suppose they are given. The
intensity matrix for state changes induced by the the agent is

Q1 =



0 0 0 0 · · · 0
λσ12 −λσ12 0 0 · · · 0
λσ13 0 −λσ13 0 · · · 0
λσ14 0 0 −λσ14 · · · 0

...
...

...
...

. . .
...

λσ1K 0 0 0 · · · −λσ1K


.

The aggregate intensity matrix is Q = Q0 + Q1, which fully characterizes the reduced form
state space dynamics.

A representative sample path generated by this model is shown in Figure 2. Inter-
arrival times are indicated by τin, where i denotes the identity of the player (with i = 0
denoting nature) and n denotes the event number. The agent’s decisions (atn ) are indicated
at each decision time. For example, at time t1, the agent chooses to continue without
replacement (at1 = 0), while at time t4, the agent chooses to replace (at4 = 1), resetting the
mileage.

Example 2, Continued. Let hik be the hazard of firm i switching from active to inactive
or vice versa in state k. Let γL and γH be the rates at which nature switches between
demand states (i.e., demand moves from low to high at rate γL). The aggregate state space
dynamics are illustrated in Figure 3.

The state transition hazards can be characterized by an 8× 8 intensity matrix Q. Note
that firms cannot change the demand state, firms cannot change each other’s states, and
nature cannot change the firms’ states. Therefore, the overall intensity matrix has the form

Q =

[
QLL QLH

QHL QHH

]
=

[
QL

1 + QL
2 QL

0

QH
0 QH

1 + QH
2

]
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i = 0
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i = 1
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τ14
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at4 = 1

Figure 2. Single agent model: a representative sample path where tn, τin, and ain denote,
respectively, the time, inter-arrival time, and action corresponding to n-th event. Moves by
the agent are denoted by i = 1 while i = 0 denotes a state change (a move by nature).

The low demand state L corresponds to encoded sates k = 1, . . . , 4. In this portion
of the state space, firms change the state as follows (diagonal elements are omitted for
simplicity):

QL
1 =


· h11 0 0

h12 · 0 0
0 0 · h13

0 0 h14 ·

 , QL
2 =


· 0 h21 0
0 · 0 h22

h23 0 · 0
0 h24 0 ·


Importantly, the locations of the nonzero off-diagonal elements are distinct because the
state-to-state communication patterns differ. A similar structure arises for the high demand
state H, for k = 5, 6, 7, 8. Therefore, given Q we can immediately determine Q0, Q1, and
Q2.

2.3. Normalizations with Respect to Alternative Clock Processes

Consider a given finite Markov jump process with intensity matrix Q = (qkl). The off-
diagonal components of the matrix Q are rates of state changes between distinct states.
For a given state k, this is a model strictly for transitions that involve leaving state k. Such
transitions occur at rate ∑l 6=k qkl = −qkk. This is essentially a competing hazards model
where each hazard is a transition to some other state l with an associated rate qkl . Note
that when a hitting time occurs for one of these processes, by definition the process must
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h23h21
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h25

(1, 0, H)

(1, 1, H)(0, 1, H)

(0, 0, H)

(1, 0, L)

(1, 1, L)(0, 1, L)

(0, 0, L)

Figure 3. Two Player Entry Game with Exogenous Demand State

leave state k. The result is a branching process where at rate −qkk an event occurs and the
probability that the event is a transition to state l is qkl/(−qkk), which is proportional to
qkl .

We can characterize the same process with an alternative parametrization that will prove
more useful in the context of dynamic discrete choice models. Let the rates (λ1, . . . , λK) be
given, where λk is the rate for a Poisson “clock process” that governs potential transitions
out of state k. For each k, we must have λk ≥ −qkk = −∑l 6=k qkl since the rate of potential
transitions must be at least as large as the rate of actual transitions. At each hitting time
under this process, the state may change to a state l 6= k or it may remain in state k.
In other words, this parametrization allows the process to remain at state k with some
probability when an event occurs. The overall rate λk can be normalized to any value
larger than the rate of actual state changes, −qkk.

Specifically, let σkl = qkl/λk be the probability that the event is a transition from state
k to state l 6= k and let σkk = (λk −∑l 6=k qkl)/λk be the probability that the event is not a
transition (i.e., the process remains at state k). To translate these probabilities into hazards,
we simply multiply by the overall rate: q̃kl = λkσkl is the rate of transitions from state k
to l 6= k. Therefore, the diagonal elements—equal to the negatives of the rates of leaving
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each state—are q̃kk = −λk(1− σkk). But the resulting intensity matrix Q̃ = (q̃kl) equals the
original intensity matrix Q = (qkl). To see this, note that q̃kl = λkσkl = λk(qkl/λk) = qkl

for all l 6= k and q̃kk = −λk + λkσkk = −∑l 6=k qkl = qkk.

2.4. Comparison with Discrete Time Models

We conclude this section with a brief comparison of continuous time and discrete time
models in terms of their reduced form implications. There are also related identification
issues which we will return to in the next section. To be concrete, suppose that the unit of
time is one year and that data are available on an annual basis (i.e., ∆ = 1).

First, consider a typical discrete time in which agents make decisions once per period
of length δ = 1 (i.e., annually). In an entry/exit setting where the choice set is J = {0, 1},
this implies that there can be at most one entry or exit per year. In a chain store setting
the choice variable is the net number of stores to open during the year, the choice set is
J = {−J, . . . , J}. This implies that there an be at most J openings or closings per year.
Hence, J must be chosen accordingly by the researcher to be the maximum number of
possible stores opened or closed by any chain firm in any single year.

Now, consider a continuous time model with a common move arrival rate λ for all
players and all states. In the entry/exit setting, the choice set is still J = {0, 1} which
implies that there are on average 1/λ entries or exits per year. In the chain store setting,
there are two possible modeling choices in continuous time. The first, and perhaps most
natural model would specify the choice set to be J = {−1, 0, 1} which implies that on
average there are at most 1/λ openings or closings per year. The choice set represents the
set of possible instantaneous state changes, so the implicit assumption is that no more than
one store is ever opened or closed simultaneously. The researcher should choose λ so that
this average is not binding. This is analogous to choosing J in the discrete time model so
that the choice set is not binding. However, there is an additional degree of freedom in
the continuous time setting because the choice set can be extended. The second approach
would be to specify J = {−J, . . . , J} for some J which implies on average at most J/λ

openings or closings per year.
In both cases, there is a trade-off between the time period chosen (which is usually

fixed at one in discrete time) and the richness of the choice set. However, the continuous
time model has an additional degree of freedom relative to the discrete time model. To
allow for more frequent openings and closings, for example, one can either adjust the
choice set (i.e., increase J), or increase λ to increase the potential frequency. The continuous
time is more forgiving of misspecifications of the choice set because the chosen rate λ

determines the average number of events rather than placing a hard limit on the realized
number of events, which is the case in discrete time.
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3. Identification Analysis

Our identification analysis proceeds in two steps corresponding to the reduced form and
the structural model. If we view deriving the implications of the model as a forward
or “bottom-up” problem, then identification is an inverse or “top-down” problem. Our
arguments follow the same natural progression.

Deriving the implications of the structural model can be viewed as a bottom-up exercise:
the structural primitives u and ψ imply value functions V which imply choice probabilities
σ. These probabilities along with the rates of moves, λ, and state transitions by nature,
Q0, in turn imply an intensity matrix Q. Finally, given the Q matrix and a process for
sampling data, this implies a data generating process. For example, for a fixed sampling
interval ∆ the distribution of observable data is P(∆) = exp(∆Q).

On the other hand, the identification problem requires us to consider the inverse
problem, working from the top down. First, given knowledge of the data generating
process, the transition matrix P(∆) for a fixed interval ∆ for example, we derive conditions
under which we can uniquely determine the reduced form intensity matrix Q. If the
complete continuous time record is potentially observable, then Q is trivially identified.
Otherwise, if the state of the game is potentially observable only at times that do not
necessarily correspond to state changes, we show that Q can still be identified. In the
leading case of discrete time data sampled at a regular intervals, we show that this is
possible under very mild conditions on the structure of the game. We also briefly consider
other possibilities such as shrinking and random sampling intervals.

Second, with Q in hand we turn to identification of the structural primitives of the
model, namely the flow payoffs u and instantaneous payoffs ψ. We show that knowledge
of Q allows us to recover these structural primitives with fewer identifying restrictions
than required in discrete time models. This is due to the absence of simultaneous moves
at any given instant, which is also the source of the computational efficiency of the model.

3.1. Identification of Q

With continuous-time data, identification and estimation of the intensity matrix for finite-
state Markov jump processes is straightforward and well-established (Billingsley, 1961).
However, when a continuous-time process is only sampled at discrete points in time, the
parameters of the underlying continuous-time model may not be point identified.3 In the

3This is known as the aliasing problem and it has been studied extensively in the context of continuous-time
systems of stochastic differential equations (Sims, 1971; Phillips, 1973; Hansen and Sargent, 1983; Geweke,
1978; Kessler and Rahbek, 2004; McCrorie, 2003; Blevins, 2017). See Figure 1 of Blevins (2017) for an illustration
in the frequency domain, where the problem is perhaps most obvious.
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present model, the concern is that there may be multiple Q matrices which give rise to the
same data generating process, which is the potentially observable transition probability
matrix P(∆) in the leading case of fixed sampling intervals.4

Before proceeding, we note that there is a similar question of identification in discrete
time models that is hidden by the usual assumption that the unknown frequency of moves
is equal to the (known) sampling frequency (Hong, Li, and Wang, 2015). If instead agents
move at a discrete interval of length δ that differs from the sampling interval ∆, then there
are in general multiple transition matrices P0 such that P∆/δ

0 = P(∆) (Gantmacher, 1959;
Singer and Spilerman, 1976).

To illustrate this issue in the continuous time setting, Figure 4 displays two distinct
paths which coincide both before and after an interval of length ∆, but which take different
intermediate steps. Consider the possible paths of the process between times t2 − ∆ and
t2. The dashed path first moves to a higher state before arriving at the resulting state kt2 ,
while the dashed and dotted path first moves to a lower state and arrives in kt2 at a later
time (but before t2). There are an infinite number of such paths since time is continuous,
but the dynamics of the process over the interval are summarized by the transition matrix
P(∆).

Much of the previous work on this identification problem seeks conditions on the
observable discrete-time transition matrix P(∆). We briefly review some of these results
in the next subsection, but our approach is to show that one can instead identify Q via
identifying restrictions on the primitives of the underlying structural model and that such
restrictions easily arise from the statement of the model itself. These can be viewed as
exclusion restrictions.

For example, in applications there are typically player-specific components of the state
vector where player i is not permitted to change the players-specific state of player j and
vice-versa. In an entry-exit model, such a state is incumbency status: players can enter
and exit by their own action, but no player can enter or exit on behalf of another player.
Similarly, if the overall state vector has components that are exogenous state variables,
such as population, then we know that any state changes involving those variables must

4A related issue is the embeddability problem: could the transition matrix P(∆) have been generated by a
continuous-time Markov jump process for some intensity matrix Q or some discrete-time chain over fixed time
periods of length δ? This is a model specification issue, also arising in both discrete time and continuous time:
could the data have been generated by the structural model (here, a continuous-time Markov jump process)?
We assume throughout that the model is well-specified and therefore, such an intensity matrix Q exists. This
problem was first proposed by Elfving (1937). Kingman (1962) derived the set of embeddable processes
with K = 2 and Johansen (1974) gave an explicit description of the set for K = 3. Singer and Spilerman
(1976) summarize several known necessary conditions for embeddability involving testable conditions on
the determinant and eigenvalues of P(∆). It might be possible to use such conditions to construct model
specification tests.
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Figure 4. Time aggregation: Two distinct paths which end in the same state at t2 and
begin in the same state at t2 − ∆ and but differ over intermediate interval of length ∆.

be due to an “action” by nature and not by an action of any other player. This natural
structure implies many linear restrictions on the Q matrix. We show that restrictions of
this form limit the domain of the mapping Q 7→ exp(∆Q) = P(∆) in such a way as to
guarantee an almost surely unique intensity matrix Q for any given discrete time transition
matrix P(∆).

3.1.1. Identification of Unrestricted Q Matrices

Returning to the general problem of identification of Q, recall that the question is whether
there exists a unique matrix Q that leads to the observed transition matrix P(∆) = exp(∆Q)

when the process is sampled at uniform intervals of length ∆. The question amounts to
determining when the matrix logarithm ln P(∆) is unique, in which case Q = ∆−1 ln P(∆).
In general, the matrix logarithm is not unique (see Gantmacher, 1959; Singer and Spilerman,
1976).

Previous mathematical treatments have tended to view the relationship exp(∆Q) =

P(∆) from the perspective of the transition matrix P(∆). In such cases there is not
an underlying model that generates Q, so Q is the model primitive of interest and is
unrestricted (aside from requirement that it must be a valid intensity matrix). As a result,
most previous work on the aliasing problem focused on finding sufficient conditions
on the matrix P(∆) (rather than Q) to guarantee that ln P(∆) is unique. For example,
if the eigenvalues of P(∆) are distinct, real, and positive, then Q is identified (Culver,
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1966). More generally, Culver (1966) proved that Q is identified if the eigenvalues of
P(∆) are positive and no elementary divisor (Jordan block) of P(∆) belonging to any
eigenvalue appears more than once. Other sufficient conditions for identification of Q
include mink{Pkk(∆)} > 1/2 (Cuthbert, 1972) and det P(∆) > e−π (Cuthbert, 1973). See
Singer and Spilerman (1976) for a summary of these results and others.

Other sufficient conditions for identification of Q involve alternative sampling schemes.
For example, Q can always be identified for some sufficiently small sampling interval ∆
(Cuthbert, 1973; Singer and Spilerman, 1976; Hansen and Sargent, 1983). A useful result
for experimental studies is that Q is identified if the process is sampled at two distinct
intervals ∆1 and ∆2 where ∆2 6= k∆1 for any integer k (Singer and Spilerman, 1976, 5.1).

The first type of conditions above—restrictions on P(∆)—are based on a “top down”
approach and are less desirable in cases where there is an underlying economic model
that generates the Q matrix. The second type of restrictions are based on changing how
the continuous time process is sampled, which is not possible in observational studies for
which the data have already been collected at regular intervals. Instead, we take a “bottom
up” approach which allows economic theory to inform our identification conditions via
restrictions on Q that guarantee uniqueness of ln P(∆). For applied economists, more
compelling conditions are likely to involve cross-row and cross-column restrictions on the
Q matrix and the locations of known zeros of the Q matrix. As we discuss below, such
restrictions arise naturally once the collection of firms, actions, and the resulting state
transitions are defined.

3.1.2. Structural Restrictions for Identification of Q

The problem of identifying continuous time models with only discrete time data has
also appeared previously in the econometrics literature, in work by Phillips (1973) on
continuous time regression models. He considered multivariate, continuous-time, time-
homogeneous regression models of the form y′(t) = Ay(t) + ξ(t), where y(t) is an n× 1
vector and A is an n× n structural matrix. He discusses the role of prior information on
the matrix A and how it can lead to identification. He showed that A is identified given
only discrete time observations on y if A satisfies certain rank conditions.

Our proposed identification strategy is inspired by this work on multivariate regression
models, but our model is different because the Q matrix is known to be an intensity matrix
(rather than an arbitrary matrix of regression coefficients) and has a rather sparse structure
which is dictated by an underlying structural model. Yet, there are a number of similarities:
the present model can also be characterized by a system of differential equations as in
(9), where the intensity matrix Q plays a role similar to the matrix A above. If Q is an
valid intensity matrix, then the functions P(∆) which solve this system are the transition
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matrices of continuous-time stationary Markov chains (Chung, 1967, p. 251–257).
The structural model restricts Q to a lower-dimensional subspace since it is sparse and

must satisfy both within-row and across-row restrictions, and given the results above it
seems likely that these restrictions could lead to identification of Q. That is, even if there
are multiple matrix solutions to the equation P(∆) = exp(∆Q), it is unlikely that two of
them simultaneously satisfy the restrictions of the structural model. We return to the two
examples introduced previously to illustrate this idea.

Example 1, Continued. In the single-agent renewal model the aggregate intensity matrix
is

(11) Q =


−q1 − q2 q1 q2 0 0

h12 −q1 − q2 − h12 q1 q2 0
h13 0 −q1 − q2 − h13 q1 q2

h14 0 0 −q1 − q2 − h14 q1 + q2

h15 0 0 0 −h15

 ,

where we have dropped the i subscript on the hazards for simplicity. The number of
parameters to be estimated in this matrix is substantially less than if each of the intensities
were allowed to vary freely. Of the 20 non-trivial state-to-state transitions, only 11 are
permitted: seven due to nature and four by action of the player. The remaining nine
transitions are not possible in a single step. Nature cannot decrease mileage and can only
increase it by one or two states at once. The agent can only reset mileage to the initial state.
This results in nine known zeros of the aggregate Q matrix. As we show below, these
restrictions are sufficient to identify Q. Note that given Q, we can separately determine
both Q0 and Q1. Additionally, the hazards h1k are the products of the overall move arrival
rates and the conditional choice probabilities, which introduces shape restrictions on h1k

across states k.

Example 2, Continued. In the 2× 2× 2 entry example, the aggregate intensity matrix is
Q = Q0 + Q1 + Q2:

(12) Q =



· h11 h21 0 γL 0 0 0
h12 · 0 h22 0 γL 0 0
h23 0 · h13 0 0 γL 0
0 h24 h14 · 0 0 0 γL

γH 0 0 0 · h15 h25 0
0 γH 0 0 h16 · 0 h26

0 0 γH 0 h27 0 · h17

0 0 0 γH 0 h28 h18 ·


,
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where the diagonal elements have been omitted for simplicity. Note that some transitions
cannot happen at all, such as (0, 1, L) to (1, 0, L). The remaining transitions can happen
only due to the direct action of one of the firms, but not the other. For example, moving
from (0, 0, H) to (1, 0, H) is only possible if firm 1 chooses to become active. From any
state, the set of other states to which either firm can move the state as a result of an action
is limited naturally by the model and the definition of the state space. This structure yields
intensity matrices that are rather sparse, which in turn makes identification of Q more
likely even with time aggregation since any observationally equivalent Q matrix must
have the same structure. Finally, given Q we can again separately recover Q0, Q1, and Q2.

Similar sparse structures arise in even models with large numbers of firms and millions
of states, as in the application of Arcidiacono, Bayer, Blevins, and Ellickson (2016). In light
of this lower-dimensional structure, we build on the results of Blevins (2017) who gave suf-
ficient conditions for identification of the intensity matrix Q of a general finite state Markov
jump processes. These conditions were based on structural restrictions on the matrix Q of
the general linear form R vec(Q) = r. For the K× K matrix Q = (qkl), vec(Q) is the vector
obtained by stacking the columns of Q: vec(Q) = (q11, q21, . . . , qK1, . . . , q1K, . . . , qKK)

>.
These restrictions will serve to rule out alternative Q matrices. Gantmacher (1959)

showed that all solutions Q̃ to exp(∆Q̃) = P(∆) have the form

Q̃ = Q + UDU−1

where U is a matrix whose columns are the eigenvectors of Q and D is a diagonal matrix
containing differences in the complex eigenvalues of Q and Q̃. This means that both the
eigenvectors U and the real eigenvalues of Q are identified. Any other such matrices Q̃
must also satisfy the prior restrictions, so R vec(Q̃) = r. By the relationship between Q
and Q̃ above, we also have R vec(Q + UDU−1) = r. But R vec(Q) = r and by linearity of
the vectorization operator, R vec(UDU−1) = 0. An equivalent representation is

R(U−> ⊗U) vec(D) = 0.

Here, adapting Theorem 1 of Blevins (2017) to the special case of finite-state Markov
jump processes, when there are at least

⌊K−1
2

⌋
linear restrictions and R has full rank, then

D must be generically zero and therefore the eigenvalues of Q̃ and Q are equal. If the
eigenvectors and all eigenvalues of Q̃ are the same as those of Q, the matrices must be
equal and therefore Q is identified.

The following theorem establishes that there are sufficiently many restrictions of full
rank to identify Q in a broad class of continuous time games. This theorem includes
exogenous market-specific state variables and shows that such states increase the number
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of zero restrictions and make identification of Q more likely, as do player-specific state
variables.

Theorem 3. Suppose the state vector is x = (x0, x1, . . . , xN) ∈ X0 ×X1 × · · · × XN where the
component x0 ∈ X0 is an exogenous market characteristic taking |X0| = K0 values and for each
i = 1, . . . , N the component xi is a player-specific state affected only by the action of each player
with |Xi| = Ki possible distinct values. If Q has distinct eigenvalues that do not differ by an integer
multiple of 2πi/∆, then Q is generically identified when

(13) K0

N

∏
i=1

Ki − K0 −
N

∑
i=1

Ji +
1
2
≥ 0.

The quantity on the left hand side is the number of overidentifying restrictions and these are strictly
increasing in Ki for i = 1, . . . , N, strictly increasing in K0 when Ki > 1 for any i = 1, . . . , N, and
strictly decreasing in Ji for i = 1, . . . , N.

Proof. See Appendix A.

Generic identification here means that Q is identified with the exception of a measure
zero set of population Q matrices (see Phillips, 1973; Blevins, 2017). Sparsity of Q aids
in identification and is increasing in both the number of exogenous states K0 and player-
specific states Ki but decreasing in the number of choices Ji. Therefore, for identification
we need either a sufficiently large number of exogenous or player-specific states or a
sufficiently small number of choices. In typical applications Ji is small relative to Ki and
K0.

One result of the theorem is that any binary choice game with meaningful player-
specific states (N > 1 with Ji = 1 and Ki > 1 for all i) is identified, regardless of the number
of players or exogenous market states. The sufficient condition in this case simplifies to
K0(∏i Ki − 1) ≥ N − 1

2 . When K0 ≥ 1 and Ki ≥ 2 we have K0(∏i Ki − 1) ≥ 2N − 1 which
exceeds N − 1

2 for integers N > 1.

3.1.3. Identification of Qi

For identification purposes, we make the following assumption which requires that given
the aggregate intensity matrix Q, we can determine the player-specific intensity matrices
Qi for i = 0, . . . , N.

Assumption 8. The mapping Q→ {Q0, Q1, . . . , QN} is known.

This assumption is satisfied in most applications, where firms cannot change each
other’s state variables and where actions by nature can be distinguished from the actions of
firms. Note also that the diagonal elements are unimportant: if the off-diagonal elements
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of each Qi can be identified from Q, then diagonal elements are equal to the negative of
the sum of the off-diagonal elements. This assumption can be verified by inspection of Q
Examples 1 and 2. For example, in the single-agent renewal example Q is given in (11)
and for a two-player entry model, Q is given in (12). A sufficient condition in general is
that the continuation states resulting from actions of different players are distinct: for all
players i and m 6= i and all states k,

{l(i, j, k) : j = 1, . . . , J} ∩ {l(m, j, k) : j = 1, . . . , J} = ∅.

3.2. Identification of the Value Functions and Payoffs

We now establish that the value functions, instantaneous payoffs, and utility functions are
identified. Let Vi = (Vi1, . . . , ViK)

> denote the K-vector of valuations for player i in each
state. Let ψij = (ψij1, . . . , ψijK)

> denote the K-vector of instantaneous payoffs for player i
making choice j in each state and let ψi = (ψ>i1 , . . . , ψ>i J )

>. Given an appropriate collection
of linear restrictions on these quantities, we show below that they are identified.

First, we consider a more general setting where there are variables that may shift the
overall rate of moves but not the payoffs. Suppose we can partition the state variable into
two components (x, z), where x are the payoff-relevant variables and z are variables that
affect the rate of moves. Let hij(x, z) be the hazard of player i choosing action j in state
(x, z).

Importantly, we note that when j = 0 is a latent or unobserved continuation action, it
is not possible to identify the rates hi0(x, z) even with continuous time data. Hence, the
overall rates of decisions λi(x, z) = ∑j hij(x, z) are also unidentified. We will consider here
whether the structural model or functional form restrictions provide enough information
to identify these rates.

For ease of exposition, we consider the case where where the choice-specific errors have
a type 1 extreme value distribution. Noting that hij(x, z) = λi(x, z)σij(x) and invoking
Lemma 1, in this case differences in log hazards can be written as

ln hij(x, z)− ln hi0(x, z) = ln σij(x)− ln σi0(x) = ψij(x)− ψi0(x) + Vi(l(i, j, k))−Vi(x).

Rearranging, we have

ln hij(x, z) = [ln hi0(x, z)− ψi0(x)] + ψij(x) + Vi(l(i, j, k))−Vi(x).

The hazards on the left hand size for j > 0 are identified from Q, while the quantities on
the right hand size are unknown.

Suppose the state space is X × Z with |X | = K, |Z| = L, and Ji = J for all i. Then
we have a linear system of equations with NJKL identified hazards, NKL unknown
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hazards, N(J + 1)K unknown instantaneous payoff, and NK unknown valuations. The
total number of unknowns is NKL + N(J + 1)K + NK = NK(J + L + 2). So, the order
condition necessary for full identification is NJKL ≥ NK(J + L + 2) or JL ≥ J + L + 2.

Before proceeding, we define Sij to be the state transition matrix induced by the
continuation state function l(i, j, ·). In other words, Sij is a permutation matrix where
the (k, l) element is 1 if playing action j in state k results in a transition to state l and 0
otherwise. Let IK denote the K× K identity matrix.



ln h1
i1

...
ln h1

i J
...

ln hL
i1

...
ln hL

iJ


=



IK . . . 0 −IK IK 0 . . . 0 Si1 − IK

IK . . . 0 −IK 0 IK . . . 0 Si2 − IK
...

...
...

...
...

...
...

...
...

IK . . . 0 −IK 0 0 . . . IK Si J − IK
...

...
...

...
...

...
...

...
...

0 . . . IK −IK IK 0 . . . 0 Si1 − IK

0 . . . IK −IK 0 IK . . . 0 Si2 − IK
...

...
...

...
...

...
...

...
...

0 . . . IK −IK 0 0 . . . IK Si J − IK





ln h1
i0

...
ln hL

i0

ψi0

ψi1
...

ψi J

Vi


If we define Xi to be the large partitioned matrix, then we have a system in the following

form:

[
Xi

Ri

] ln h0
i

ψi

Vi

 =

[
ln h+i

ri

]
.

Note that under Assumption 6, for any action j > 0 in any state k, the resulting state is
always different from k. Therefore, the diagonal elements of Sij are all zero and Sij − IK

has full rank for each j > 0. It follows that Xi is a JKL× (J + L + 2)K matrix with rank
(J + L + 1)K. Hence, we will need JKL − (J + L + 1)K = K(JL − J − L − 1) full-rank
restrictions for identification.

Theorem 4. If for player i there exists a collection of linear restrictions represented by a matrix Ri

and vector ri such that

Ri

ln h0
i

ψi

Vi

 = ri

and the matrix
[

Xi
Ri

]
has rank (J + L + 2)K, then h0

i , ψi, and Vi are identified.
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First, we note that the number of restrictions per player is independent of the total
number of players in the game. Therefore, the total number of required identifying
restrictions is only linear in N. On the other hand, for discrete time models the number of
restrictions needed is exponential in N (Pesendorfer and Schmidt-Dengler, 2008).

It is helpful now to consider some more examples. Suppose the move arrival rate
exclusion is a binary variable (e.g., fast and slow states), meaning L = 2, and suppose we
are considering a binary choice model, J = 1. There are 2K observable hazards and 5K
unknowns, so we need 3K full-rank restrictions. Since the instantaneous payoffs ψij(x)
are only identified relative to the cost of inaction ψi0(x), lets also assume that inaction
is costless. This yields K restrictions of the form ψi0k = 0 for k = 1, . . . , K. If we further
assume that the move arrival rates are independent of x (but not z), this yield (K− 1)L
restrictions of the form ∑J

j=0 hij(x, z) = ∑J
j=0 hij(x′, z) for all x, x′ and all z. With only these

relatively straightforward identifying assumptions we have 3K− 2 restrictions. With only
two more restrictions, the model is identified.

Now consider the case without a move arrival rate exclusion (i.e., L = 1). If inaction is
again costless (ψi0k = 0 for all k), then there are only (J + 2)K remaining unknowns and
JK identified hazards, leaving only 2K additional restrictions needed. If we assume that
the move arrival rate is constant across states (∑J

j=0 hij(x) = ∑J
j=0 hij(x′) for all x, x′) then

we have K− 1 restrictions. Only K + 1 additional restrictions are needed to identify the
model.

Finding additional full-rank restrictions is not difficult in most applications. Examples
include states where the value function is known, for example, if Vik = 0 when a firm has
permanently exited. Exclusion restrictions of the form Vik = Vik′ are also common, where
k and k′ are two states that differ only by a rival-specific state and are payoff equivalent to
firm i. Finally, states where the instantaneous payoffs are the same provide restrictions, for
example we may assume that entry costs or scrap values are constant across states which
would imply ψijk − ψijk′ = 0 for all i, some choice j, all states k and k′. In these cases, the
rank condition can be verified almost by inspection in applications.

When there is no move arrival rate exclusion (L = 1), another possible restriction that
mirrors the assumed fixed decision times in discrete time models is ∑J

j=0 hij(x) = 1 for all
i and x. This K restrictions per player and reduces the number of unknowns.

It remains to identify the K-vector of payoffs ui for each player i. In light of the linear
representation in (7),

ui = Ξi(Q)Vi − LiCi(σi)

where Ξi is the matrix function defined in (8). Under the maintained assumptions and
restrictions, Vi and ψi are identified for each player. The choice probabilities σ are also
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identified since Q is identified. Therefore, ui can be obtained from the equation above.

Theorem 5. Under the maintained assumptions, if for any player i the quantities Vi, ψi, and Q
are identified, then the flow payoffs ui are identified.

Example 1, Continued. In the single-agent renewal model, since the replacement cost
does not depend on the mileage state we have ψ1k = c for all k. This alone yields K− 1
restrictions of full rank of the form ψ1k − ψ11 = 0 for all k. We also assumed the rate of
move arrivals is constant across states, yielding K− 1 additional restrictions. The linearity
of the utility function imposes restrictions on V, and although this does not fit in the linear
restriction framework of Theorem 4 it also contributes to identification of ψ and V.

Example 2, Continued. In the simple two-player entry-exit model, we may suppose that
the entry costs and scrap values are independent of the market state (high or low demand)
and whether a rival is present. In other words, ψi1k − ψi11 for all states k, yielding K− 1
restrictions per player or 2K− 2 total restrictions.

4. Estimation

In this section, we review the two-step CCP or pseudo maximum likelihood (PML)
estimator which was proposed by Arcidiacono, Bayer, Blevins, and Ellickson (2016) and
was based on the ideas of Hotz and Miller (1993). We will examine this estimator in the
Monte Carlo experiments of Section 6.

Since it is unknown whether there is a unique equilibrium of the model, we maintain a
widely-used assumption from the discrete time literature on the data generating process:
we require that the data be generated by a single Markov perfect equilibrium at the true
values and that all players expect the same equilibrium to be played at all instants both in
and out of sample. This assumption allows us to estimate the model even in the presence
of multiple equilibria.5

Assumption 9. (a) In each market m = 1, . . . , M, players expect the same equilibrium,
with intensity matrix Q0, to be played for all times t ∈ [0, ∞). (b) The distribution of state
transitions in each market m and each time period t is consistent with row kmt of the
transition matrix P0(∆) = exp(∆Q0).

Now, let h denote the vector of all distinct hazards appearing in the matrices Q0, Q1, . . . , QN .
Namely, let hijk denote the hazard of player i choosing action j in state k,

(14) h = (h012, . . . , h0,K−1,K, h111, . . . , h1JK, . . . , hijk, . . . , hN11, . . . , hNJK),

5Note that partial-identification-based approaches such as Tamer (2003) and Ciliberto and Tamer (2009) do
not require this assumption.
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and let H ⊂ RK(K−1)+NJK denote the space of all possible vectors h. This vector includes
hazards for nature for i = 0, where h0lk denotes the hazard of jumps from state k to state l.
However, note that the continuation action hazards for j = 0 will not appear in Q unless
the continuation choice is separately observed. Furthermore, if the move arrival rates λik

are known we can impose this structure and write h as

h = (q012, . . . , q0,K−1,K, λ11σ111, . . . , λikσijk, . . . , λN1σN11, . . . , λNKσNJK).

Given a vector h the corresponding matrix Q can be reconstructed.
Let θ denote the finite-dimensional vector of parameters which determine the move

arrival rates (if estimated), the flow payoffs u, and the instantaneous payoffs ψ. Then, let
Λ : Θ×H → H : (θ, h) 7→ Λ(θ, h) denote the mapping which, given a value of θ and a
vector of hazards h, a new vector of hazards h′ = Λ(θ, h) is determined using the inverse
CCP mapping of Theorem 1. This proceeds in two steps: given θ and h, we reconstruct
Q and σ and obtain new value functions using (7). Given the new value functions, we
determine the new choice probabilities σ′ and then form the new vector of hazards h′. In
equilibrium, the conditional choice probabilities are such that h = Λ(θ, h).

The remaining conditions are standard regularity conditions requiring markets to be
independent, the parameter space to be compact, the population parameter vector to be
identified, and the hazard mapping Λ to be sufficiently smooth.

Assumption 10. (a) The observations {kmt : m = 1, . . . , M, t = 1, . . . , T}, sampled on the
lattice {t∆ : t = 1, . . . , T}, are independent across markets m and Pr(kmt = k) > 0 for
all k ∈ K. (b) Θ is compact and θ0 ∈ int(Θ). (c) For any θ ∈ Θ with θ 6= θ0 and any h
such that h = Λ(θ, h), we have h 6= h0. (d) Λ : Θ×H → H : (θ, h) 7→ Λ(θ, h) is twice
continuously differentiable.

4.1. Maximum Likelihood Estimation

The model can be estimated using maximum likelihood if either the equilibria can be enu-
merated (which is may be feasible, given the computational tractability of the continuous-
time model) or there is a unique equilibrium. It is likely that methods proposed for
discrete time models, such as the homotopy method (Borkovsky, Doraszelski, and Kryukov,
2010; Besanko, Doraszelski, Kryukov, and Satterthwaite, 2010; Bajari, Hong, Krainer, and
Nekipelov, 2010) or recursive lexicographical search (Iskhakov, Rust, and Schjerning, 2016),
could be adapted to the present model as well, but investigating such possibilities is
beyond the scope of this paper.

Define the pseudo log likelihood function for parameters θ and arbitrary hazards h as

LM(θ, h) =
1
M

M

∑
m=1

T

∑
t=1

ln P (km,t−1, kmt; ∆, Λ(θ, h)) ,
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where P(k, l; ∆, h) denotes the (k, l) element of the transition matrix induced by h. As in
Aguirregabiria and Mira (2007), we say this is a pesudo log likelihood function because it
can be evaluated at hazards h that are not necessarily equilibrium values (e.g., for two-step
estimation we will use estimates ĥ of equilibrium hazards).

If we were to estimate the model under conditions known to yield a unique equilibrium
for each θ ∈ Θ, then we could define the maximum likelihood estimator simply as

θ̂ML = arg max
θ∈Θ

LM(θ, h)

subject to h = Λ(θ, h).

Alternatively, when there are multiple equilibria we could define the estimator in terms of
the equilibrium that maximizes the likelihood. Let E(θ) = {h : h = Λ(θ, h)} denote the set
of equilibrium hazards for given parameters θ. Then define

θ̂ML = arg max
θ∈Θ

{
max

(h,V)∈E(θ)
LM(θ, h)

}

4.2. Two-Step Pseudo Maximum Likelihood Estimation

Suppose we have a
√

M-consistent first stage M-estimator ĥ for h0. ABBE defined a feasible
two-step pseudo maximum likelihood estimator θ̂ of θ as

θ̂PML = arg max
θ∈Θ

LM(θ, Λ(θ, ĥ))

and show that under Assumption 10 above θ̂PML is consistent and asymptotically normal.
This is similar to both the CCP estimator of Hotz and Miller (1993) and the pseudo
maximum likelihood PML estimator of Aguirregabiria and Mira (2007). We examine
the finite sample and computational properties of this estimator and the computational
properties of the model more generally in the Monte Carlo experiments presented in
Section 6.

5. A Continuous-Time Quality Ladder Model of Oligopoly Dynamics

To illustrate the application to dynamic games used in empirical industrial organization
we consider a discrete control version of the quality ladder model proposed by Ericson
and Pakes (1995). This model has been examined extensively by Pakes and McGuire
(1994, 2001), Doraszelski and Satterthwaite (2010), Doraszelski and Pakes (2007), and
several others. The model consists of at most N firms who compete in a single product
market. The products are differentiated in that the product of firm i has some quality level
ωi ∈ Ω, where Ω = {1, 2, . . . , ω̄, ω̄ + 1} is the finite set of possible quality levels, with
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ω̄ + 1 denoting the “quality” of inactive firms. Firms with ωi < ω̄ + 1 are incumbents. In
contrast to Pakes and McGuire (1994), all controls here are discrete: given a move arrival,
firms choose whether or not to move up the quality ladder, not how much to spend to
increase their chances of doing so.

We consider the particular example of price competition with a single differentiated
product where firms make entry, exit, and investment decisions, however, the quality
ladder framework is quite general and can be easily adapted to other settings. For example,
Doraszelski and Markovich (2007) use this framework in a model of advertising where,
as above, firms compete in a differentiated product market by setting prices, but where
the state ωi is the share of consumers who are aware of firm i’s product. Gowrisankaran
(1999a) develops a model of endogenous horizontal mergers where ωi is a capacity level
and the product market stage game is Cournot with a given demand curve and cost
functions that enforce capacity constraints depending on each firm’s ωi.

5.1. State Space Representation

We make the usual assumption that firms are symmetric and anonymous. That is, the
primitives of the model are the same for each firm and only the distribution of firms across
states, not the identities of those firms, is payoff-relevant. By imposing symmetry and
anonymity, the size of the state space can be reduced from the total number of distinct
market structures, (ω̄ + 1)N , to the number of possible distributions of N firms across
ω̄ + 1 states. The set of payoff-relevant states is thus the set of ordered tuples of length
ω̄ + 1 whose elements sum to N, given by S = {(s1, . . . , sω̄+1) : ∑j sj = N, sj ∈ Z∗}, where
Z∗ is the set of nonnegative integers. In this notation, each vector ω = (ω1, . . . , ωN) ∈ ΩN

maps to an element s = (s1, . . . , sω̄+1) ∈ S with sj = ∑N
i=1 1{ωi = j} for each j.

In practice we map the multidimensional space S to an equivalent one-dimensional
state space X = {1, . . . , |S|}.6 Payoff relevant market configurations from the perspective
of firm i are then uniquely described by two integers (x, ωi), where x ∈ X denotes the
market structure and ωi is firm i’s own quality level.

5.2. Product Market Competition

Again, we follow Pakes and McGuire (1994) in assuming a continuum of consumers with
measure M > 0 and that each consumer’s utility from choosing the good produced by
firm i is g(ωi)− pi + ε i, where ε i is iid across firms and consumers and follows a type I
extreme value distribution. The g function is used to enforce an upper bound on profits.

6 In particular, we use the “probability density space” encoding algorithm described in Gowrisankaran
(1999b), to map market structure tuples s ∈ S to integers k ∈ X .
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As in Pakes, Gowrisankaran, and McGuire (1993), for some constant ω∗ we specify the
function

g(ωi) =

ωi if ωi ≤ ω∗,

ωi − ln(2− exp(ω∗ −ωi)) if ωi > ω∗.

Let ςi(ω, p) denote firm i’s market share given the state ω and prices p. From McFadden
(1974), we know that the share of consumers purchasing good i is

ςi(ω, p) =
exp(g(ωi)− pi)

1 + ∑N
j=1 exp(g(ωj)− pj)

.

In a market of size M, firm i’s demand is qi(ω, p) = Mςi.
All firms have the same constant marginal cost c ≥ 0. Taking the prices of other firms,

p−i, as given, the profit maximization problem of firm i is

max
pi≥0

qi(p, ω)(pi − c).

Caplin and Nalebuff (1991) show that (in this single-product firm setting) there is a unique
Bertrand-Nash equilibrium, which is given by the solution to the first order conditions of
the firm’s problem:

∂qi

∂pi
(p, ω)(pi − c) + qi(p, ω) = 0.

Given the functional forms above, the first order conditions become

−(pj − c)(1− ς j) + 1 = 0.

We solve this nonlinear system of equations numerically using the Newton-Raphson
method to obtain the equilibrium prices and the implied profits π(ωi, ω−i) = qi(p, ω)(pi−
c) earned by each firm i in each state (ωi, ω−i).

5.3. Incumbent Firms

We consider a simple model in which incumbent firms have three choices upon receiving
a move arrival. Firms may continue without investing at no cost, they may invest an
amount κ in order to increase the quality of their product from ωi to ω′i = min{ωi + 1, ω̄},
or they may exit the market and receive some scrap value ϕ. We denote these choices,
respectively, by the choice set Ji = {0, 1, 2}. When an incumbent firm exits the market,
ωi jumps deterministically to ω̄ + 1. Associated with each choice j is a private shock ε ijt.
These shocks are iid over firms, choices, and time and follow a standard type I extreme
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value distribution. Given the future value associated with each choice, the resulting choice
probabilities are defined by a logit system.

Due to the complexity of the state space, we now introduce some simplifying notation.
For any market-wide state k ∈ X , let ωk = (ωk1, . . . , ωkN) denote its counterpart in ΩN .
In the general notation introduced above, the instantaneous payoff ψijk to firm i from
choosing choice j in state k is

ψijk =


0 if j = 0,

−κ if j = 1,

ϕ if j = 2.

The state resulting from continuing (j = 0) is simply l(i, 0, k) = k. Similarly, for investment
(j = 1), l(i, 1, k) = k′ where state k′ is the element of X such that ωk′i = min{ωki + 1, ω̄}
and ωk′m = ωkm for all firms m 6= i. Note that we are considering only incumbent firms
with ωki < ω̄ + 1. Exiting is a terminal action with an instantaneous payoff, but no
continuation value.

The value function for an incumbent firm in state k is thus

Vik =
1

ρ + ∑l 6=k qkl + ∑N
m=1 λmk

(
πik + ∑

l 6=k
qklVil + ∑

m 6=i
λmk ∑

j
σmjkVi,l(m,j,k)

+λik E max
{

Vik + ε i0, Vi,l(i,1,k) − κ + ε i1, ϕ + ε i2

})
where πik = π(ωki, ωk,−i) represents the flow profit accruing from product market competi-
tion and λik = λ for incumbents and potential entrants and λik = 0 if firm i is not active in
state k. Conditional upon moving while in state k, incumbent firms face the maximization
problem max {Vik + ε i0,−κ + Vik′ + ε i1, ϕ + ε i2} . The resulting choice probabilities are

σi0k =
exp(Vik)

exp(Vik) + exp(−κ + Vik′) + exp(ϕ)
,

σi1k =
exp(−κ + Vik′)

exp(Vik) + exp(−κ + Vik′) + exp(ϕ)
,

σi2k = 1− σi0k − σi1k,

where, as before, k′ = l(i, 2, k) denotes the resulting state after investment by firm i.

5.4. Potential Entrants

Whenever the number of incumbents is smaller than N, a single potential entrant receives
the opportunity to enter at rate λ. Potential entrants are short-lived and do not consider
the option value of delaying entry. If firm i is a potential entrant with the opportunity to
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move it has two choices: it can choose to enter (j = 1), paying a setup cost η and entering
the market immediately in a predetermined entry state ωe ∈ Ω or it can choose not to
enter (j = 0) at no cost. Associated with each choice j is a stochastic private payoff shock
εe

ijt. These shocks are iid across firms, choices, and time and are distributed according to
the type I extreme value distribution.

In our general notation, for actual entrants (j = 1) in state k the instantaneous payoff
is ψi1k = −η and the continuation state is l(i, 1, k) = k′ where k′ is the element of X with
ωk′i = ωe and ωk′m = ωkm for all m 6= i. For firms that choose not to enter (j = 0) in state
k, we have ψi0k = 0 and the firm leaves the market with no continuation value. Thus, upon
moving in state k, a potential entrant faces the problem

max {εe
i0,−η + Vik′ + εe

i1}

yielding the conditional entry-choice probabilities

σi1k =
exp(Vik′ − η)

1 + exp(Vik′ − η)
.

5.5. State Transitions

In addition to state transitions that result directly from entry, exit, or investment decisions,
the overall state of the market follows a jump process where at some rate γ, the quality of
each firm i jumps from ωi to ω′i = max{ωi − 1, 1}. This process represents an industry-
wide (negative) demand shock, interpreted as an improvement in the outside alternative.

6. Monte Carlo Experiments

In this section we describe Monte Carlo experiments conducted using the single-agent
renewal model of Example 1 and the quality ladder model described in Section 5.

6.1. Single-Agent Dynamic Discrete Choice

Here, we generate data according to the simple single player binary choice model described
in Example 1. The primitives of the model are the payoff (mileage cost) parameter β, the
intensity matrix (mileage transition) parameters q1 and q2, the reset (engine replacement)
cost c, the discount rate ρ, and the move arrival rate λ. We fix ρ = 0.05 and focus on
estimating θ = (λ, q1, q2, β, c). We first choose values for θ and then use value function
iteration to determine the value function over the state space X to within a tolerance of
ε = 10−3 in the relative sup norm. We then use the resulting value function to generate
data for various values of T and ∆.

35



In the first set of experiments, we use the full-solution maximum likelihood approach
to estimate the model. The value functions are obtained through value function iteration
for each value of θ in an inner loop while maximizing the likelihood function in an outer
loop using the L-BFGS-B algorithm (Byrd, Lu, and Nocedal, 1995; Zhu, Byrd, Lu, and
Nocedal, 1997) with numerical derivatives with step size h = 10−8. We estimate the model
under several different scenarios including full continuous-time data, continuous-time
data when the continuation decision is not observed, and discrete time data. In the
experiments involving discrete time data, we compare the estimator across several choices
of the observation interval ∆ while keeping the overall observation window [0, T] fixed. In
each experiment we fixed the discount rate at ρ = 0.05 and the number of mileage states
at K = 10. The population parameters are (q1, q2, λ, β, c) = (0.15, 0.05, 0.2,−0.1, 1.25).

We generate 100 data sets over the interval [0, T] with T = 25, 000 for an average
of 10, 000 events and then estimate the model under several sampling regimes: true
continuous time data, continuous time data when passive actions (a = 0, the con-
tinuation choice) are unobserved, and discrete time data observed at intervals ∆ ∈
{0.625, 1.25, 2.5, 5.0, 10.0}.7 For each specification, we report the mean bias and the root
mean square error (RMSE) of the parameter estimates over 100 replications in Table 1. All
are parameters are estimated quite precisely and with little finite-sample bias. The loss in
precision from moving away from continuous time data is initially greatest for the move
arrival rate, λ, yet all estimates of this parameter are still very precise. The replacement
cost, c, also loses precision with more coarsely sampled data, but the increases are not
large until we move to seeing only one in four events on average in the sampling period.

We also carry out the same experiments using CCP-based estimation in the single-
agent model. The results are displayed in Table 2. Again, we estimate the model with
full continuous-time data, a continuous-time dataset with missing passive actions, and
several discrete-time datasets of varying granularity. For the full continuous-time dataset,
we can nonparametrically estimate the CCPs using a simple frequency estimator. When
accounting for passive moves, we approximate the CCPs by dividing the number of times
each particular observed choice was made in each state by the implied expected number
of move arrivals in that state. Finally, when estimating the model with discrete-time data,
we first jointly estimate the first-stage parameters (λ, q1, and q2) and the parameters of a
logistic regression model for the probability of renewal with parameters α. The regressors
in our logit model are a constant, the state x, and ln x. Then, we invert the predicted CCPs

7One could view 25,000 as the number of months in the data with {0.625, 1.25, 2.5, 5.0, 10.0} indicating the
number of months (or fraction of months) between samples. While 25,000 implies having over 2,000 years of
data, this is following one time series. An almost equivalent structure would follow 1000 decision-makers over
two years.
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obtained using the estimated parameters α̂ to obtain the value function which we use to
estimate the remaining second stage parameters.

When passive moves are not observed we cannot estimate the CCPs directly. Since the
full choice set is not observed, we first store ∑T

t=1 1{at = j, xt = k}/ ∑T
t=1 1{xt = k}τt for

each state k and each choice j. The numerator is the number of observations for which j
is chosen in state k and the denominator is the total time spent in state k. Dividing this
quantity by λ yields an estimate of the true CCP since 1/λ is the average time between
move arrivals.

Using CCPs increases the mean square error slightly, reflecting noise from the first
stage. However, the estimates are still very good, particularly when the average number of
state changes per sampling interval is small.

Finally, we also estimated the model with continuous-time data while allowing for
buses to be of two distinct types, where the type is not observed by the econometrician. In
this specification, the type affected both the mileage transition probabilities and payoff
parameters. In particular, with probability π, the bus is of the first type and with probability
1− π, the bus is of the second type. For buses of type m = 1, 2, the mileage jumps forward
one unit at rate q1 and two units at rate q2m, the cost of mileage is β, and the cost of
replacement is cm. Again, estimation proceeded quickly with little difficulty in separating
the unobserved heterogeneity from the other model parameters. The results are reported
in Table 3 for varying numbers of agents, M, and observations per agent, N.

6.2. A Dynamic Discrete Game

Our second set of Monte Carlo experiments corresponds to the quality ladder model
described in Section 5. We estimate models ranging from 10 to 30 firms and obtain
estimates of θ = (λ, γ, κ, η, ϕ). The population parameters used were (λ, γ, κ, η, ϕ) =

(1.9, 0.1, 2.0, 8.0, 2.0). In all experiments, as before, we fixed ρ = 0.05. In these experiments,
we used samples containing T = 200 continuous time events in each of M = 200 markets.
For each of 25 simulated datasets, we report the mean bias and root mean square error
(RMSE) of the parameter estimates.

In all experiments, we hold the number of possible quality levels fixed at ω̄ = 7, set
ωe = b ω̄

2 c, and vary the maximum number of players, N, and the market size, M. We
increase the market size (M) so that the average number of active players (navg) grows
with the total number of possible players (N). The average quality level of active firms
is denoted ωavg. We also report K, the number of states from the perspective of player
i—the number of distinct (ω, ωi) combinations. The size of the state space for the largest
problem is over 58 million.

Table 4 summarizes the results for full-solution estimation, where we obtain the value
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function to within a tolerance of ε = 10−5 in the relative sup norm using value function
iteration for each trial value of θ. Table 5 presents the analogous results obtained using
CCP estimation, where we assume the true CCPs are available. In all cases, both full-
solution methods and CCP estimation perform extremely well in terms of having small
finite sample bias and mean square error.

For CCP estimation, we substitute the true CCPs in the Γ mapping to estimate the value
function. In practice, the CCPs must be estimated in a preliminary step. However, because
there are many possible methods for doing so, and because they tend to be application-
and data-specific, we simply present the results for the second-stage parameters as if the
true CCPs were known. We have estimated the CCPs nonparametrically using locally
weighted averages with little change in the results.

We then compare the computational time required for both full-solution and CCP
estimation in Table 6. We first report the number of players N, the market size M, and
the total number of states K. In all cases we use L-BFGS-B to maximize the log-likelihood
function or pseudo log-likelihood function with starting values (0.5, 0.5, 0.5, 6.0, 1.0).8 For
each model, computational times are reported for only one replication. Since we consider
many models, the overall trends are clear despite the fact that we do not report averages.9

The first timing column reports the time required to obtain the value function V for
each model specification. This step is necessary to either generate a dataset or to simulate
the model (e.g., to perform counterfactuals). In particular, we use datasets consisting of
M = 200 markets with T = 200 continuous time events observed in each. We estimate the
parameters λ and γ in a first step, but we do not report times because they were less than
two seconds in all cases. This step is independent of the method used to obtain the value
function. Next, we report the total time required to estimate the second stage parameters
κ, η, and ϕ via full-solution estimation. For each new trial value of θ, we use the value
function at the previous θ as the new starting value for the value function iteration. Finally,
we report the time required to estimate the second-stage parameters.10

Even in a game with 30 players and over 58 million states, full-solution estimation took
under seven hours. Conditional on already having the CCPs from a first stage, two-step
estimation times were incredibly fast, with the longest taking less than three minutes.

8We use central finite-difference gradients with a stepsize of h = 10−6 for full-solution estimation and
h = 10−9 for CCP estimation.

9All reported times are seconds CPU time required for estimation of a single replication of each specification
on a dual processor Intel Xeon X5670 system. Our programs are written in Fortran and take advantage of
parallel processing, however, the reported times are total CPU time used across all processors.

10This table does not address the time required to estimate the first-stage CCPs, which can vary significantly
depending on which method is used. Parametric methods can clearly be quite fast while fully nonparametric
methods can be computationally intensive.
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To put these numbers in perspective, Doraszelski and Judd (2012) note that it would
take about a year to just solve for the equilibrium of a 14 player game using the basic
Pakes-McGuire algorithm.11 For the continuous time model, it takes less than one minute
to solve the game and twenty minutes to estimate the parameters using a full-solution
(NFXP) approach. CCP estimation requires only two seconds. These computational times
suggest that very large classes of problems can be easily estimated in a continuous-time
framework. Furthermore, the computational time required to calculate the fixed point
once in continuous time is small even for very large problems. This implies that simulating
counterfactuals from large-scale models will not be an issue.

7. Conclusion

In this paper we have developed new results on the theoretical and econometric properties
of the empirical framework introduced by Arcidiacono, Bayer, Blevins, and Ellickson (2016)
for continuous time dynamic discrete choice games. We established equilibrium existence
in a more general class of models with heterogeneous firms and state-dependent move
arrival rates, we developed more general conditions for nonparametric identification with
discrete time data, we explored these results in the context of three canonical examples
widely used in applied work, and we examined the computational properties of the model
as well as the finite sample properties of the estimator through a series of large-scale
Monte Carlo experiments that are representative of models used in applied work.
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A. Proofs

Proof of Lemma 2. The result follows directly from the joint distribution function under
independence:

Pr (τ ≤ t) = Pr
(

min
i

τi ≤ t
)
= 1− Pr(τ1 > t, . . . , τN > t)

= 1−
N

∏
i=1

Pr(τi > t) = 1−
N

∏
i=1

e−λit = 1− e−(∑
N
i=1 λi)t .

Therefore, τ has an exponential distribution with rate parameter ∑N
i=1 λi.

Furthermore,

Pr(τi ≤ τj ∀j) = E
[
Pr(τj ≥ τi ∀j 6= i) | τi

]
=
∫ ∞

0

[
e−∑j 6=i λj

]
λi e−λiτi dτi

=
∫ ∞

0
λi e−(∑

N
j=1 λj)τi dτi

= − λi

∑N
j=1 λj

[
e−(∑

N
j=1 λj)τi

]∞

τi=0

=
λi

∑N
j=1 λj

.

�

Proof of Theorem 1. Given a collection of equilibrium best response probabilities {σi}N
i=1,

we can obtain a matrix expression for the value function Vi(σi). By Proposition 2 of
Arcidiacono, Bayer, Blevins, and Ellickson (2016), the difference Vi,l(i,j,k)(σi)−Vi,l(i,j′,k)(σi)

can be expressed as a function of payoffs and choice probabilities σi and so we can write Ci

as a function of only conditional choice probabilities and payoffs (i.e., so that it no longer
depends on the value function).

Note that we can write the value function in vector form as follows:

Vi(σi)

[(
ρi IK +

N

∑
m=1

Lm

)
− (Q0 − Q̃0)

]
= ui + Q̃0Vi(σi) + ∑

m 6=i
LmΣm(σm)Vi(σi) + Li [Σi(σi)Vi(σi) + Ci(σi)] .
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Sampling n q1 q2 λ β c
Continuous Time 10,000 Bias 0.000 0.000 -0.000 0.010 0.005

RMSE 0.002 0.001 0.003 0.068 0.053

Passive Moves 7,176 Bias 0.000 0.000 -0.002 0.052 -0.030

RMSE 0.002 0.001 0.025 0.180 0.200

∆ = 0.625 40,000 Bias -0.013 0.003 -0.011 0.110 0.055

RMSE 0.013 0.004 0.022 0.238 0.246

∆ = 1.25 20,000 Bias -0.005 0.001 -0.009 0.075 -0.055

RMSE 0.006 0.002 0.026 0.224 0.301

∆ = 2.5 10,000 Bias -0.003 0.001 -0.003 0.015 -0.084

RMSE 0.005 0.002 0.027 0.335 0.419

∆ = 5.0 5,000 Bias 0.001 0.000 -0.005 0.087 -0.019

RMSE 0.007 0.003 0.020 0.265 0.403

∆ = 10.0 2,500 Bias 0.008 -0.002 0.000 0.008 -0.153

RMSE 0.020 0.007 0.022 0.398 0.634

The mean bias and root mean square error (RMSE) are reported for 100 simulated datasets under several

sampling regimes. Passive moves refers to datasets for which the choice a = 0 is not observed while ∆

denotes the observation interval for discrete-time data. n denotes the average number of observations

(continuous-time events or discrete-time intervals) when observing the model on the fixed interval [0, T] with

T = 25, 000.

Table 1. Single player Monte Carlo results: NFXP estimation.
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Sampling n q1 q2 λ β c
Continuous Time 10,000 Bias -0.000 0.000 0.000 0.016 0.007

RMSE 0.002 0.001 0.003 0.066 0.053

Passive Moves 7,176 Bias -0.000 0.000 -0.014 -0.167 -0.094

RMSE 0.002 0.001 0.018 0.220 0.133

∆ = 0.625 40,000 Bias -0.013 0.003 -0.003 0.112 0.129

RMSE 0.013 0.004 0.040 0.298 0.296

∆ = 1.25 20,000 Bias -0.005 0.001 0.009 0.064 0.113

RMSE 0.006 0.002 0.048 0.303 0.334

∆ = 2.5 10,000 Bias -0.003 0.001 0.011 0.115 0.103

RMSE 0.005 0.002 0.071 0.351 0.398

∆ = 5.0 5,000 Bias 0.001 0.000 0.021 0.098 0.102

RMSE 0.007 0.003 0.088 0.390 0.514

∆ = 10.0 2,500 Bias 0.004 -0.001 0.050 0.176 0.151

RMSE 0.018 0.008 0.219 0.562 0.746

The mean bias and root mean square error (RMSE) are reported for 100 simulated datasets under several

sampling regimes. Passive moves refers to datasets for which the choice a = 0 is not observed while ∆

denotes the observation interval for discrete-time data. The CCPs were estimated in a first step using a

frequency estimator for continuous-time data and via logistic regression on x and ln x for estimation with

time aggregated data. n denotes the average number of observations (continuous-time events or discrete-time

intervals) when observing the model on the fixed interval [0, T] with T = 25, 000.

Table 2. Single player Monte Carlo results: CCP estimation.
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Rearranging to collect terms involving Vi(σi) yields

Vi(σi)

[
ρi Ik +

N

∑
m=1

Lm[IK − Σm(σm)]−Q0

]
= ui + LiCi(σi).

The matrix in square brackets side is strictly diagonally dominant: for each m ρm > 0 by
Assumption 2, Lm is a diagonal matrix with strictly positive elements by Assumption 3,
Σm(σm) has elements in [0, 1] with row sums equal to one, and elements of Q0 satisfy
|q0kk| = ∑l 6=k |q0kl | in each row k. Therefore, by the Levy-Desplanques theorem (Horn
and Johnson, 1985, Theorem 6.1.10) this matrix is nonsingular and the representation in
Theorem 1 holds. �

Proof of Theorem 2. Define the mapping Υ : [0, 1]N×J×K → [0, 1]N×J×K by stacking the best
response probabilities. This mapping defines a fixed point problem for the equilibrium
choice probabilities σ as follows:

Υijk(σ) =
∫

1
{

ε ij′k − ε ijk ≤ ψijk − ψij′k + Vi,l(i,j,k)(σ−i)−Vi,l(i,j′,k)(σ−i) ∀j′ ∈ Ji

}
f (ε ik) dε ik.

The mapping Υ is a continuous function from a compact space onto itself, recalling that
Vik has the linear representation of Theorem 1. By Brouwer’s theorem, it has a fixed point.
The fixed point probabilities imply Markov strategies that constitute a Markov perfect
equilibrium. �

Proof of Theorem 3. To establish generic identification of Q we can specialize the proof of
Theorem 1 of Blevins (2017) to the present setting, where Q is an intensity matrix with
row sums equal to zero and therefore has one real eigenvalue equal to zero and therefore
at most K− 1 complex eigenvalues. In this setting, P(∆) is observed and is the solution to
the system of differential equations in (9) while Q is a matrix of unknown parameters with
qkl for l 6= k being the hazard of jumps from state k to state l. The unique solution to this
system is the transition matrix P(∆) = exp(∆Q), which has the same form as the matrix B
in equation (3) of Blevins (2017) and Q in this model is analogous to A in (ïIJś). Therefore,
and identification of Q depends on establishing a unique solution to an equation involving
a matrix exponential of a parameter matrix. Furthermore, in this setting Q is known to
have row sums equal to zero, and therefore the vector of ones is a right eigenvector of Q
with zero as the corresponding eigenvalue. In this case, the number of required restrictions
on Q is reduced to b(n− 1)/2c because we know Q has at least one real eigenvalue.

Under the assumptions the number of distinct states in the model is K = K0 ∏N
i=1 Ki.

Therefore, we will require at least
⌊K−1

2

⌋
linear restrictions of the form R vec(Q) = r where

R has full rank. We proceed by showing that the present model admits an intensity matrix
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Q with a known sparsity pattern and so we can use the locations of zeros as homogeneous
restrictions, where r will be a vector of zeros.

Recall that each player i has Ji + 1 choices, but since one is a continuation choice this
results in Ji non-zero off-diagonal elements per row of Q. There are (at most) K0 − 1
non-zero off-diagonal elements due to exogenous state changes by nature. The only
other non-zero elements of each row are the diagonal elements and therefore there are
K−∑i Ji − (K0 − 1)− 1 = K0 ∏i Ki −∑i Ji − K0 zeros per row of Q. The order condition
we need to show is that the total number of zero restrictions is at least b(K− 1)/2c. For
simplicity, it will suffice to show that there are K/2 ≥ b(K− 1)/2c restrictions. Summing
across rows, this condition is satisfied when (K0 ∏i Ki)(K0 ∏i Ki−K0−∑i Ji) ≥ K0 ∏i Ki/2.
Simplifying yields the sufficient condition in (13).

To see how this condition changes with K0, Ki, and Ji, we take derivatives. The
derivative with respect to K0 is ∏i Ki − 1 ≥ 0. This value is always non-negative, since
Ki ≥ 1 for all i, and is strictly positive when Ki > 1 for any i. The derivative with respect
to Ki for i = 1, . . . , N is K0 ∏m 6=i Km > 0. This value is always strictly positive since K0 ≥ 1
and Ki ≥ 1 for all i. Finally, the derivative with respect to Ji is −1. �
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M N q1 q21 q22 π λ β c1 c2

25 100 Bias 0.000 0.001 0.001 -0.023 0.001 0.040 -0.014 0.003

RMSE 0.006 0.004 0.005 0.118 0.005 0.306 0.112 0.255

50 100 Bias 0.000 0.000 0.000 -0.007 0.001 0.045 -0.005 0.000

RMSE 0.004 0.003 0.004 0.070 0.004 0.194 0.067 0.141

100 100 Bias 0.000 0.000 0.000 -0.115 0.001 0.023 -0.006 -0.006

RMSE 0.003 0.002 0.002 0.059 0.003 0.139 0.049 0.107

25 200 Bias 0.000 0.000 0.000 -0.015 0.000 0.025 0.004 0.002

RMSE 0.003 0.003 0.003 0.093 0.004 0.177 0.061 0.118

50 200 Bias 0.000 0.000 0.000 -0.006 0.000 0.033 0.009 0.008

RMSE 0.003 0.002 0.002 0.074 0.003 0.140 0.042 0.102

100 200 Bias 0.000 0.000 0.000 0.000 0.000 0.014 0.002 -0.005

RMSE 0.002 0.001 0.002 0.047 0.002 0.097 0.029 0.062

Table 3. Single player Monte Carlo results with unobserved heterogeneity.
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N M K λ γ κ η ϕ

4 0.5 840 Bias 0.008 0.001 0.002 0.007 0.007

RMSE 0.012 0.002 0.016 0.099 0.118

6 1.0 5,544 Bias 0.009 0.001 -0.002 0.000 0.007

RMSE 0.013 0.002 0.016 0.056 0.062

8 3.0 24,024 Bias 0.008 0.001 -0.002 0.005 0.011

RMSE 0.012 0.002 0.015 0.068 0.055

10 5.0 80,080 Bias 0.009 0.001 -0.004 0.005 0.001

RMSE 0.013 0.002 0.019 0.080 0.055

12 8.0 222,768 Bias 0.008 0.000 -0.001 0.029 -0.004

RMSE 0.012 0.002 0.022 0.080 0.059

14 10.0 542,640 Bias 0.009 0.001 0.002 -0.007 0.009

RMSE 0.013 0.002 0.026 0.067 0.050

16 13.0 1,193,808 Bias 0.009 0.001 0.006 0.001 -0.001

RMSE 0.013 0.002 0.030 0.076 0.043

18 17.0 2,422,728 Bias 0.008 0.001 -0.002 0.007 0.009

RMSE 0.012 0.002 0.029 0.094 0.050

20 21.0 4,604,600 Bias 0.008 0.001 0.003 0.000 0.000

RMSE 0.012 0.002 0.037 0.112 0.051

22 25.0 8,288,280 Bias 0.008 0.000 0.006 0.030 0.019

RMSE 0.012 0.002 0.039 0.125 0.063

24 29.0 14,250,600 Bias 0.008 0.001 0.002 0.021 0.016

RMSE 0.013 0.002 0.039 0.120 0.055

26 33.0 23,560,992 Bias 0.009 0.001 0.000 0.051 0.033

RMSE 0.013 0.002 0.042 0.124 0.074

28 37.0 37,657,312 Bias 0.008 0.001 -0.004 0.002 0.032

RMSE 0.013 0.002 0.044 0.179 0.072

30 41.0 58,433,760 Bias 0.010 0.000 0.007 0.048 0.035

RMSE 0.014 0.002 0.045 0.165 0.081

Table 4. Quality ladder Monte Carlo results: NFXP estimation.

50



N M K λ γ κ η ϕ

4 0.5 840 Bias 0.008 0.001 0.001 0.016 0.009

RMSE 0.012 0.002 0.017 0.091 0.109

6 1.0 5,544 Bias 0.009 0.000 -0.003 0.014 0.011

RMSE 0.013 0.002 0.017 0.053 0.046

8 3.0 24,024 Bias 0.008 0.000 -0.006 0.034 0.015

RMSE 0.012 0.002 0.017 0.086 0.041

10 5.0 80,080 Bias 0.009 0.001 -0.003 0.044 0.008

RMSE 0.013 0.002 0.019 0.103 0.039

12 8.0 222,768 Bias 0.009 0.000 0.005 0.078 0.002

RMSE 0.012 0.002 0.027 0.131 0.039

14 10.0 542,640 Bias 0.009 0.000 0.018 0.055 0.008

RMSE 0.013 0.002 0.042 0.110 0.034

16 13.0 1,193,808 Bias 0.009 0.001 0.028 0.070 0.003

RMSE 0.013 0.002 0.054 0.135 0.028

18 17.0 2,422,728 Bias 0.008 0.000 0.023 0.065 0.002

RMSE 0.012 0.002 0.052 0.138 0.032

20 21.0 4,604,600 Bias 0.008 0.000 0.036 0.071 -0.006

RMSE 0.012 0.002 0.075 0.160 0.035

22 25.0 8,288,280 Bias 0.008 0.000 0.043 0.094 0.000

RMSE 0.013 0.002 0.084 0.168 0.044

24 29.0 14,250,600 Bias 0.008 0.000 0.043 0.082 -0.005

RMSE 0.014 0.002 0.090 0.147 0.043

26 33.0 23,560,992 Bias 0.009 0.000 0.045 0.104 0.004

RMSE 0.013 0.002 0.097 0.173 0.059

28 37.0 37,657,312 Bias 0.008 0.000 0.040 0.052 0.000

RMSE 0.013 0.002 0.100 0.197 0.059

30 41.0 58,433,760 Bias 0.010 0.000 0.061 0.113 0.001

RMSE 0.014 0.002 0.113 0.215 0.066

Table 5. Quality ladder Monte Carlo results: CCP estimation.
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N M K navg ωavg Obtain V NFXP CCP

4 0.5 840 3.94 4.07 < 1 12 < 1
6 1.0 5,544 4.88 4.17 1 47 < 1
8 3.0 24,024 6.35 4.88 6 149 < 1

10 5.0 80,080 7.86 4.92 13 262 < 1
12 8.0 222,768 9.94 4.75 34 503 1

14 10.0 542,640 11.42 4.46 57 1,040 2

16 13.0 1,193,808 13.25 4.20 112 1,214 3

18 17.0 2,422,728 15.24 3.94 220 1,643 7

20 21.0 4,604,600 17.17 3.77 415 2,678 13

22 25.0 8,288,280 18.69 3.49 766 5,449 23

24 29.0 14,250,600 20.62 3.31 1,239 5,956 43

26 33.0 23,560,992 22.14 3.23 2,350 9,496 69

28 37.0 37,657,312 24.19 3.01 3,576 14,910 110

30 41.0 58,433,760 25.96 2.86 5,443 23,302 172

Times are total seconds of CPU time on a dual processor Intel Xeon X5670 system for a single replication of

each specification. N denotes the total possible number of players, M denotes the market size, and K denotes

the total number of distinct states. For all experiments, the number of quality levels is ω̄ = 7 and the discount

rate at ρ = 0.05.

Table 6. Quality ladder model Monte Carlo results: CPU Time (in seconds).
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