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Abstract

We provide new characterization results for the value of games in partition

function form. In particular, we use the potential of a game to de�ne the value.

We also provide a characterization of the class of values which satis�es one form

of reduced game consistency.
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1 Introduction

In a variety of economic and social contexts, the activities of one group of agents
a�ect payo�s of other groups. Consider, for instance, the issue of political alliances
between di�erent groups of countries. The bene�t to each group will typically depend
on the strength of the alliance between opposing groups of countries. Similarly, the
bene�ts to one group of agents from activities aimed at controlling pollution depend
upon whether other agents are also engaged in similar pollution abatement exercises.

In a framework where such externalities across coalitions or groups are absent,
Shapley [15] provided what has become the focal method for distributing the surplus
generated by cooperation amongst groups of agents. Shapley obtained a remarkable
uniqueness result by showing that there is only one solution - the Shapley value -
which satis�es some seemingly mild axioms.1 The Shapley value essentially gives
each player the average of his marginal contributions to di�erent coalitions

There have been other axiomatic characterizations of the Shapley value. For
instance, Young [19] uses a monotonicity principle which states that if a game changes
so that some player's contribution to all coalitions increases or stays the same then
the player's reward should not decrease. Young shows that the Shapley value is the
only e�cient and symmetric solution that is monotonic in this sense.

Hart and Mas-Colell [7] provide two derivations of the Shapley value. First, they
use the analytical tool of a potential function to formalise the notion of rewarding
players according to marginal productivity. The potential function has the property
that the sum of the players' marginal products (according to the potential) adds up
to the worth of the grand coalition. Moreover, the Shapley value happens to coincide
with the vector of marginal products. Thus, this provides another very interesting
interpretation of the value. Hart and Mas-Colell also de�ne an internal consistency
property of solution concepts and show that the Shapley value is the unique solution
satisfying this consistency property and the so-called standard property on two-person

games.2

Given the widespread presence of externalities, it is important to study the distri-
butional issue in environments with externalities. Games in partition function form,3

in which the \worth" of any coalition depends on how players outside the coalition
are organised, provides an appropriate framework within which one can describe so-
lution concepts for games with externalities. Not surprisingly, this has received some
recent attention. For instance, Macho-Stadler et al. [6] provide characterizations of
extensions of the Shapley value to partition function games, using axioms which are
designed to capture the intuitive content of Shapley's original axioms.4 In contrast,
de Clippel and Serrano [5] follow the approach of Young [19], and also provide alter-

1Sergiu Hart provides on his website a large and useful bibliography of value theory in cooperative
games.

2This property states that on two-person games, the gains from cooperation be split equally
between the two players.

3This is due to Thrall and Lucas [18]. See also Ray [14] for a discussion of games in partition
function form.

4Bolger [3] and Myerson [10] are earlier contributions along the same lines.
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native characterizations of value concepts for partition function games. Other recent
contributions include Albizuri et al. [1], Fujinaka [5] and Pham Do and Norde [13].

In this paper, we follow the methodology of Hart and Mas-Colell [7]. The poten-
tial approach requires that \subgames" be well-de�ned for each player set. This is a
trivial issue for characteristic function games since a subgame is simply the \projec-
tion" of the original game to the appropriate player set. However, there is no such
unambiguous answer for games in partition function form since the worth of each
coalition depends on how the complementary coalition is partitioned.

We adopt the following procedure. We de�ne restriction operators, which are
functions that map each partition function game on any set of players N to its
subgames with player sets N n fig. Note the subgames so constructed are arti�cial
constructs, and are \estimates" or \approximations" based on the available data.
A basic requirement on restriction operators is that the order in which players are
removed from a game should be irrelevant for the restricted game. In other words,
�rst removing player 1 and then player 2 or �rst removing player 2 and then player
1 should result in the same game restricted to the player set without 1 and 2. We
call this requirement path-independence. Our �rst main result shows that any path-
independent restriction operator de�nes uniquely a potential for games in partition
function form. This unique potential coincides with that of a particular characteristic
function game without externalities. A natural step is to de�ne the value of the
partition function game to be the Shapley value of this game in characteristic function
form. For any path-independent restriction operator r, we call this value the r-
Shapley value.

We give examples to illustrate that a rich class of restriction operators satis�es
path independence. Hence, our �rst result demonstrates that the potential approach
yields a large class of extensions of the Shapley value from games without external-
ities to games with externalities.

We again follow Hart and Mas-Colell [7] by using their \reduced game" consis-
tency condition, suitably adapted to games in partition function form, to characterise
solution concepts. We show that a large number of solutions, satisfy this de�nition
of consistency and the so-called standard property on two-person games.

Since Path independence by itself does not have much bite in singling out re-
striction operators, we go on to impose additional axioms on these operators which
are parallel to the ones used by Shapley [15]. This allows us to characterise a one-
parameter class of restriction operators. Of course, each operator in our class gives
rise to a di�erent value through the potential. We show that all our values satisfy
the basic properties of the Shapley value, suitably extended to the more general
framework of games with externalities.

The plan of this paper is the following. Section 2 describes the general framework
and some notation which is used throughout the paper. In Section 3, we introduce
restriction operators and the potential approach. This section also contains our char-
acterisation result using path independence. Section 4 contains the characterisation
result on consistency. In Section 5, we describe the additional axioms as well as the
characterisation result on restriction operators. In Section 6, we show that the so-
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lution concepts implied by the class of restriction operators characterised in Section
5 satisfy the natural extensions of the original Shapley axioms to partition function
games. Section 7 concludes with a brief discussion of the existing literature. The
Appendix contains the proofs of all our results.

2 Framework and Notation

Let N be some �nite set of players, containing at least 4 players. We are interested
in games with externalities where the player set can be any subset of N. We de�ne
such games formally.

Choose any subset N of N. A coalition S is a non-empty subset of N . Let
2N denote the set of all non-empty subsets of N . A partition of N is a set � =
fT1; : : : ; Tkg such that (i) for all i; j 2 f1; : : : ; kg, Ti\Tj = ;, and (ii) [ki=1Ti = N . Let
�N denote the set of all partitions of N , and �S denote the set of all partitions of any
coalition S � N . For any coalition S and any partition �, let S\� = fS\T : T 2 �g.
For any coalition S, Sc denotes the set N n S.5 For any S, �t(S) = ffigji 2 Sg.
That is, �t(S) is the \trivial" partition of S consisting of the singleton members of
S.

Given player set N � N, let (N; v) denote a game in partition function form.
That is, v speci�es a real number for every coalition S and for every partition of Sc.
We represent this as v(S;�(Sc)), and call this the worth of coalition S when Sc is
partitioned according to �(Sc). We will call (S;�(Sc)) an embedded coalition. For
any player set N , we will simply write v(N) instead of v(N ; ;).

The game (N; v) is with externalities if the worth of at least one coalition depends
on the partition of the other players, i.e. v(S;�(Sc)) 6= v(S;�0(Sc)) for at least one
coalition S and some �(Sc); �0(Sc) 2 �Sc .

A game (N; v) is without externalities if the worth of any coalition S is indepen-
dent of how the complementary coalition Sc is partitioned. That is, a game without
externalities is the \traditional" TU game in characteristic form with v : 2N ! R.
We will typically use w;w0 etc., to denote games without externalities and v; v0 to
denote games with externalities.

Let V and W denote respectively the class of all partition function games and
characteristic function games which can be constructed on player sets that are subsets
of N. Of course, W � V.

A solution concept or value is a mapping ' which associates with every game
(N; v) in V a vector in RjN j satisfying

P
i2N 'i(N; v) = v(N). A value determines

the payo�s of the individual players in any game.

5Since we want to allow for variable player sets, there may be some ambiguity about the no-
tation Sc. This is to be understood as the complement of the coalition S in the player set under
consideration.
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3 The Potential Approach

The traditional approach in economics of paying individuals according to their
marginal productivity has no straightforward analogue in cooperative game theory
because the sum of the players' marginal contributions to the grand coalition is typ-
ically not a feasible payo� vector. Hart and Mas-Colell (1989) develop the potential
function as a new analytical tool which helps in formalising the notion of rewarding
players according to their marginal contributions. In particular, they de�ne the po-
tential as a real-valued function P on the set of all TU games (without externalities)
such that the marginal contributions of all players according to P add up to the
worth of the grand coalition, and moreover the resulting payo� vector coincides with
the Shapley value of the TU game.

More formally, they de�ne a function P : W ! R which assigns a real number
P (N;w) to every TU game (N;w), and de�ne the marginal contribution of player i
to be

DiP (N;w) = P (N;w)� P (N n fig; w)

Note that (N n fig; w) is the projection of (N;w) on Nnfig. The function P is a
potential if P (;; 0) = 0 and X

i2N

DiP (N;w) = w(N)

for every TU game (N;w). Hart and Mas-Colell (1989) show that there is a unique
potential function and that for every game (N;w), the payo� vector (DiP (N;w))i2N
coincides with the Shapley value of the game, i.e.,

DiP (N;w) = Shi(N;w) =
X

S�N:s:t: i2S

(s� 1)!(n� s)!

n!
[w(S)� w(S n fig)]

where s and n denote the cardinalities of the sets S and N respectively.
Our principal goal in this paper is to use the potential approach to derive a

value for games in partition function form. Notice that this approach requires us to
specify subgames (N n fig; v) for each game (N; v). This is perfectly straightforward
for characteristic function games since (N nfig; w) is simply the restriction of (N;w)
to N n fig. Unfortunately, there is no unambiguous way of deriving subgames for
games in partition function form.

Consider, for instance, N = f1; 2; 3g, and suppose v(N) = a, v(fi; jg; fkg) = b,
and

v(fig; fj; kg) = c; v(fig;�t(fj; kg)) = d

Then, what is (f2; 3g; v�1) where v�1 denotes the corresponding partition function
for the player set f2; 3g. Since there is only one possible partition of f1; 2; 3g in
which f2; 3g is a member, it is natural to de�ne v�1(f2; 3g) � v(f2; 3g; f1g).6 The
problem appears when one tries to specify v�1(f2g; f3g) from knowledge of v on the
player set f1; 2; 3g. Should we take a simple or weighted average of v(f2g; f1; 3g)
and v(f2g;�t(f1; 3g))? Or take the maximum (or minimum) worth amongst these?

6In general, one can specify v�i(N n fig) = v(N n fig; fig).
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3.1 Restriction Operators

We follow the following procedure. De�ne a restriction operator to be a map-
ping r from V to V which speci�es for each game (N; v) 2 V a \subgame" game
(Nnfig; v�i;r) for each i 2 N . Notice that once a particular restriction operator r
has been speci�ed, then it is straightforward to de�ne an r-potential function. We
will subsequently use r-potential functions to derive corresponding values following
the Hart and Mas-Colell procedure.

In order to de�ne a restriction operator, we need some notation.
Let �(S) = (S1; S2 : : : ; SK) be a partition of some set S. Then, for any i =2 S,

�+i(S) is the set of partitions of S [ fig where i either joins one of the coali-
tions Sk of �(S), the other coalitions remaining unchanged, or it is the partition
(S1; : : : ; SK ; fig). For instance, if S = f1; 2; 3g and �(S) = ff1; 2g; f3gg, then
�+4(S) = fff1; 2; 4g; f3gg; ff1; 2g; f3; 4gg; ff1; 2g; f3g; f4ggg.

Given any (N; v) in V, the general form of a restriction operator is speci�ed
below:

v�i;r(S;�((S [ fig)c)) = rNi;S;�((S[fig)c)
�
(v(S;�))�2�+i((S[fig)c)

�
So, the worth of any coalition S corresponding to (S;�((S [ fig)c)) in the sub-

game when player i is absent is some function of the worths (S;�) where � is some
element of �+i((S[fig)c). For instance, if N = f1; 2; 3; 4g, then v�4;r(f1g; f2; 3gg) =
rN4;f1g;f2;3g(v(f1g; f2; 3; 4g); v(f1g; f2; 3g; f4g)). In the subgame the worth of any
coalition S for a speci�c partition of the other players depends only on the worths of
S where player i joins one of the existing members of the given partition or remains
alone.

Of course, this speci�cation hardly imposes any restriction on the rNi;S;�((S[fig)c)
functions, and hence on the restriction operators. For instance, the speci�cation
allows rNi;S;�((S[fig)c) to depend on i, the coalition S, the partition of its complement
in the subgame, and the original player set. In order to make notation simpler, we
will typically drop the superscript N and the subscripts S and �((S[fig)c) whenever
no confusion can result from this and write ri instead of rNi;S;�((S[fig)c). Similarly, we

will drop the superscript r and write v�i instead of v�i;r.
In this paper we use an axiomatic approach to restriction operators. Each axiom

is meant to be a \reasonable" property of a restriction operator. As we proceed,
we will impose more and more axioms on restriction operators and �nally single out
a one-parameter class of restriction operators via axioms which are parallel to two
axioms used by Shapley in his characterization of the Shapley value.

The most basic axiom is that of Path Independence. For any i; j 2 N , let v�ij =
(v�i)�j .

De�nition 1 A restriction operator r satis�es Path Independence if for all (N; v) 2
V, for all i; j 2 N , v�ij = v�ji.

If Path Independence is not satis�ed, then the subgame on the player set N nfi; jg
is not well-de�ned. So, Path Independence is almost a necessary condition to use
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the potential approach since the latter requires well-de�ned subgames. In particular,
then the subgame v�S , where some coalition S � N leaves the game v, is well-de�ned:
under Path Independence the players belonging to S are sequentially removed from
v in any arbitrary order.

Given any well-de�ned restriction operator r, it is now easy to de�ne the r-
potential function of any game (N; v) in V. More formally, we de�ne a function
P r : V ! R which assigns a real number P r(N; v) to every game (N; v). The
marginal contribution of player i is

DiP r(N; v) = P r(N; v)� P r(N n fig; v�i)

The function P r is an r-potential if P r(;; 0) = 0 andX
i2N

DiP r(N; v) = v(N)

for all games (N; v) in V.
Path independence by itself has an important implication for the subsequent

analysis. In particular, it allows us to relate the r-potential of any game with ex-
ternalities to the potential of a game without externalities. Put di�erently, we can
derive a characteristic function game from any game in partition function form, and
then de�ne the value of the partition function form game to be the Shapley value
of the associated characteristic function game. Of course, this has also been the ap-
proach followed by other recent contributions.7 The novelty of our approach is that
we use the potential function to derive the associated characteristic function game,
and so the latter will depend on the speci�c restriction operator r used to de�ne the
r-potential.

Given any restriction operator r, and game (N; v), de�ne the characteristic func-
tion wrv : 2

N ! R as follows:

wrv(N) = v(N); and for all S � N;wrv(S) = v�S
c;r(S)

Theorem 1 Let r be a restriction operator satisfying Path Independence. Then for

all (N; v) 2 V, we have

(i) P r(N; v) = P (N;wrv).

(ii) DiP
r(N; v) = DiP (N;w

r
v) = Shi(N;w

r
v).

The proof of this and subsequent theorems is in the Appendix.

7See, for instance [4] and [6].
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3.2 The r-Shapley Value

Let r be any restriction operator satisfying Path Independence. Following Hart and
Mas-Colell (1989), Theorem 1 allows us to use the r-potential to de�ne a value as
Shr, where

Shri (N; v) � DiP
r(N; v) = P r(N; v)� P r(Nnfig; v�i;r) for all i 2 N

Alternatively,
Shr(N; v) = Sh(N;wrv):

We will call Shr the r-Shapley value.

3.3 Examples

The class of restriction operators satisfying Path Independence is very big. We give
a few examples to illustrate the richness of this class.

One example is where an a priori partition of the set N is given and any game
is restricted by taking the worth of a coalition when the other players are organized
according to the �xed partition. In other words, any game is restricted by \projecting
it onto the coordinate" of this partition. More formally, let P be a partition of N.
Given any (N; v) in V, let for all i 2 N ,

v�i;rP(S;�((S [ fig)c)) = v(S;Sc \ P)

if (S [ fig)c \ P = �((S [ fig)c); and v�i;rP(S;�((S [ fig)c)) = 0 otherwise. We will
call rP the P-coordinate (restriction) operator. It is easy to check that this restriction
operator satis�es Path Independence.

The next restriction operator assumes implicitly that a coalition has optimistic
expectations about the restricted game. In particular, it supposes that the worth of
the embedded coalition (S; �(S[fig)c)) in the game v�i equals the maximum worth
over all embedded coalitions (S; �) where � 2 �+i((S [ fig)c).

The max (restriction) operator is speci�ed below. For all (N; v) 2 V and all
i 2 N , let

v�i;max(S;�((S [ fig)c)) = max
�2�+i((S[fig)c)

v(S;�):

The \dual" of the max operator is the min operator and is obtained by replacing
max by min in the above equalitry.

The average operator r� de�nes the worth of an embedded coalition (S; �) to be
a weighted average of the worths of embedded coalitions (S; �0) where �0 2 �+((S [
fig)c). However, the weights have to be carefully speci�ed in order to satisfy path
independence. One possible set of weights is the symmetric weight system, which
is a vector of weights � = (�(S;�))S�N�T;�2�(T ) such that each weight �(S;�(T ))
depends only on the size distribution which �(T ) induces on T . For instance, if
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T = f1; 2; 3g, and S = f4; 5g say, then �(S; ff1; 2g; f3gg) = �(S; ff2; 3g; f1gg) =
�(S; ff1; 3g; f2gg). Then, the operator r� is

v�i;r�(S; �((S [ fig)c)) =
X

�02�+i((S[fig)c)

�(S;�0)v(S;�0)

The simplest symmetric weight vector is one where each �0 2 �+i((S [ fig)c) has an
equal weight of 1=K where K is the number of elements in �+i((S [ fig)c).

Another operator is the following. It simply restricts any game (N; v) to (N �
fig; v�i) by assigning to any coalition and any partition the worth of the embedded
coalition which results when player i forms a singleton coalition. The trivial operator
is speci�ed below. For all (N; v) 2 V and all i 2 N , let

v�i;triv(S;�((S [ fig)c)) = v(S;�((S [ fig)c) [ fig):

Clearly, the trivial operator satis�es Path Independence. Furthermore, it is easy to
verify that for all (N; v) and all S � N we have

wtrivv (S) = v(S;�t(Sc)):

The triv-Shapley value has played an important role in de Clippel and Serrano [4].

4 Consistency

Hart and Mas-Colell (1989) provide an axiomatic derivation of the Shapley value in
characteristic function games through the use of an internal consistency condition
which has come to be called a \reduced game" consistency property.8 The intuitive
content of this concept of consistency is the following. Suppose ' is a solution
concept, and that a group of players can be \bought o�" by paying them according to
'. These players do not actually leave the game, but can be persuaded to cooperate
with any coalition provided they are paid according to '. This then precipitates a
reduced game on the complementary player set Sc, and ' is said to satisfy (reduced
game) consistency if it prescribes the same payo�s to players in Sc in both the
reduced game as well as the original game for the grand coalition.

There are di�erent de�nitions of reduced games, each corresponding to a di�erent
interpretation of what it means for the coalition S to be paid according to the solution
concept '. Below we de�ne the natural extension of the reduced game formulated
by Hart and Mas-Colell to partition function form games. As one might imagine,
each restriction operator gives rise to one such reduced game and to a corresponding
notion of consistency.

It is worth pointing out here that a \reduced" game is di�erent from a subgame.
This di�erence is more transparent when the original game is without externalities.
As we have pointed out earlier, the subgame on player set S is simply the projection

8Di�erent versions of the reduced game property have proved very useful in the characterization
of a variety of cooperative solution concepts. See for instance [1], [3], [7], [9], [10], and [14].
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of the original game to S and subsets of S. That is, there is no ambiguity about the
subgame. However, there are di�erent versions of a reduced game even in this case.

De�nition 2 Fix a restriction operator r satisfying Path Independence. Let ' be

a value and (N; v) 2 V. For any S � N , the reduced game (S; v';rS ) is de�ned as

follows. For all R � S and all �(S nR) 2 �SnR,

v';rS (R;�(S nR)) = v(R [ Sc;�(S nR))�
X
k2Sc

'k(R [ Sc; v�(SnR);r)

So, the Hart and Mas-Colell reduced game on the player set S speci�es that if
players in Sc join forces with some R � S, then they are paid what they would obtain
(according to ') in the subgame restricted to the player set Sc [R. Of course, this
subgame depends on the speci�c restriction operator.9

This reduced game leads to the following de�nition of consistency.

De�nition 3 A value ' is r-consistent i� for all (N; v) 2 V, all S � N and all

i 2 S, we have

'i(N; v) = 'i(S; v
';r
S )

Hart and Mas-Colell (1989) showed that on the class of games W, the Shapley
value is the only solution satisfying consistency and the \standard property" which
requires that on two-person games, the solution splits the gains from cooperation
equally between the two players. More formally,

De�nition 4 A value ' satis�es the standard property on two-person games if for

all (fi; jg; v) 2 V, 'i(fi; jg; v) = v(fig) + 1
2 [v(fi; jg)� v(fig)� v(fjg)].10

In this section, we prove an analogous result for partition function games. For this
uniqueness result we need two very mild additional axioms on restriction operators.

De�nition 5 A restriction operator r satis�es Translation Invariance if for all

player sets N , all i 2 N , all S � Nnfig, and all �((S [fig)c), and any real numbers

x1; : : : ; xk and c,

rNi;S;�((S[fig)c)(x1 � c; : : : ; xk � c) = rNi;S;�((S[fig)c)(x1; : : : ; xk)� c:

Translation Invariance simply says that if the original worths are translated by
some constant, then in the restricted game the worth should also be translated by
the same constant.

De�nition 6 A restriction operator satis�es Limited Independence if for all N1 �
N2 � N and i 2 N1,

rN1

i;S;�(T ) = rN2

i;S[(N2�N1);�(T )

when S � (N1 � fig) and any T = N1 � (S [ fig).

9Notice that the Hart and Mas-Colell reduced game for TU games is obtained from De�nition 2
by dropping �(SnR) from it.

10Abusing notation, for two player games we write v(fig) instead of v(fig; fjg).
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Limited independence identi�es a situation where the restriction operator does
not vary with the original player set. To some extent, this is a technical condition and
has no obvious intuitive appeal. However, we will show later that this condition is
actually an implication of stronger but more transparent conditions that are imposed
in the next section.

We are now ready for the main theorem of this section.

Theorem 2 Let r be a restriction operator satisfying Path Independence, Limited

Independence and Translation Invariance. Then, a value ' satis�es r-consistency
and the standard property on two-person games if and only if ' � Shr.

The following corollaries follow from Theorem 2 because the classes of operators
described in the corollaries either satisfy the three conditions imposed in the theorem
or the proof of the theorem can be easily adapted to the speci�c case.

Corollary 1 A value ' satis�es max-consistency and the standard property on two-

person games if and only if ' � Shmax.

Corollary 2 A value ' satis�es triv-consistency and the standard property on two-

person games if and only if ' � Shtriv.

Corollary 3 A value ' satis�es r�-consistency and the standard property on two-

person games if and only if ' � Shr�.

Although the P-coordinate operator does not satisfy Translation Invariance, we
obtain from Theorem 2 and its proof a similar corollary for it.

Corollary 4 Let P be a partition of the set N. A value ' satis�es rP-consistency
and the standard property on two-person games if and only if ' � ShrP.

5 A Characterisation Theorem

The examples in the last section illustrate the range of restriction operators which
satisfy Path Independence. We now de�ne some other axioms on restriction opera-
tors. We then go on to show that these axioms single out a one-parameter class of
restriction operators.

First, we de�ne a dummy player. In games without externalities, a dummy player
is one whose marginal contribution is zero to all coalitions. By analogy, a dummy
player must be one whose marginal contribution is zero to all embedded coalitions.
However, this does not uniquely de�ne the concept of a dummy player. One can still
de�ne two notions of a dummy player.

De�nition 7 Let (N; v) be a game in V.

(i) Player i 2 N is a dummy player of type 1, if for all S � N containing i, and
for all partitions �(Sc), v(S;�(Sc))� v(S n fig;�) = 0 for all � 2 �+i(Sc).

11



(ii) Player i 2 N is a dummy player of type 2, if for all S � N containing i, and
for all partitions �(Sc), v(S;�(Sc))� v(S n fig;�(Sc) [ fig) = 0.

The di�erence between the two de�nitions hinges on what player i is supposed
to do after she leaves coalition S. Player i is said to be a dummy player of type 1 if
no assumption is made about what coalition she joins after leaving S|her marginal
contribution to S is zero irrespective of which coalition she joins. A player is a type
2 dummy player if her marginal contribution to any embedded coalition is zero when
she remains alone after leaving S. Clearly, a type 1 dummy player is a type 2 dummy
player, though the converse is not true.

De�nition 8 A restriction operator r satis�es the Weak Dummy Axiom if for all

(N; v) 2 V, if player p is a dummy player of type 1 in (N; v), then player p is a

dummy player of type 1 in (N n fig; v�i) for all i 6= p.

De�nition 9 A restriction operator r satis�es the Strong Dummy Axiom when the

following are true for all (N; v) 2 V:

(i) If player p is a dummy player of type 1 in (N; v), then player p is a dummy

player of type 1 in (N n fig; v�i) for all i 6= p.

(ii) If player p is a dummy player of type 2 then player p is a dummy player of

type 2 in (N n fig; v�i) for all i 6= p.

Both Dummy axioms are designed to capture the idea that a player who is
\useless" in the original game should also be useless in all subgames.

The Weak Dummy Axiom does not impose any condition on type 2 dummy
players. Hence, the Strong Dummy Axiom implies theWeak Dummy Axiom. We also
remind the reader that these are axioms on the restriction operator and not on the
value. So, the dummy axioms de�ned above are related but distinct from the dummy
axioms on solution concepts which are, for instance, used in the characterization of
the Shapley value.

De�nition 10 A restriction operator r satis�es Scale Invariance if for all (N; v); (N; v0) 2
V, if v = a+ bv0 for some a and some b > 0, 11 then for all i 2 N , v�i = a+ bv0�i.

This axiom incorporates the notion that if two games on the player set are trans-
forms of one another - for instance because individual utility functions undergo a�ne
transformations, then the subgames should also be similarly related. Note that Scale
Invariance implies Translation Invariance.

De�nition 11 A restriction operator r satis�es Non-negativity if for all (N; v) 2 V,
if v � 012, then there exists i 2 N such that for some S � N n fig and � 2 �(S[fig)c

we have v�i(S;�) � 0.

11Abusing notation, v = a + bv0 means v(S;�(Sc)) = a + bv0(S;�(Sc)) for all S � N and all
�(Sc) 2 �Sc .

12We use the convention that x � 0 means xi � 0 for all i with strict inequality for some i.
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This axiom is extremely weak. All it requires is that if the partition function is
non-negative, then there must be some player i such that in the subgame on player
setNnfig, some embedded coalition has non-negative worth. No restriction is placed
on worths of other embedded coalitions in the subgame or on worths of embedded
coalitions in other subgames.

Another weak axiom is the following.

De�nition 12 A restriction operator r satis�es Sign Independence if for all (N; v); (N; �v) 2
V, with v � 0 and �v � 0 such that v = ��v, then for all i 2 N , v�i = ��v�i.

Essentially, this axiom says that the process by which subgames are derived in situ-
ations where individuals are sharing bene�ts should be the same as when they are
sharing costs.

We �rst illustrate through examples why some of the possible restriction opera-
tors do not satisfy one or more of the axioms de�ned above.

Consider, for instance, the simple average (restriction) operator �ra, where for all
(N; v) 2 V, for all i 2 N ,

v�i;�ra(S;�((S [ fig)c)) =
1

K

X
�2�+i((S[fig)c)

v(S;�)

where K = j�+i((S [ fig)c)j. This operator does not satisfy the Weak Dummy
Axiom. Let N = f1; 2; 3; 4g and 4 be a dummy player of type 1 in (N; v). Now,

v�3;�ra(f1g; f2g; f4g) = 1=3 [v(f1g; f2; 3g; f4g) + v(f1g; f2g; f3; 4g) + v(f1g; f2g; f4g; f3g)]

and
v�3;�ra(f1; 4g; f2g) = 1=2 [v(f1; 4g; f2; 3g) + v(f1; 4g; f2g; f3g)]

If 4 is a dummy player of type 1 in v�3;�ra , then we must have

v�3;�ra(f1g; f2g; f4g) = v�3;�ra(f1; 4g; f2g)

Because 4 is a dummy of type 1 in v, v(f1; 4g; f2; 3g) = v(f1g; f2; 3g; f4g) and
v(f1; 4g; f2g; f3g) = v(f1g; f2g; f3; 4g) = v(f1g; f2g; f4g; f3g). But, then the last
equality will hold only if v(f1; 4g; f2g; f3g) = v(f1; 4g; f2; 3g). The fact that 4 is a
dummy player in v does not imply the last equality.

Recall the de�nition of the max operator: for all (N; v) 2 V and all i 2 N ,

v�i;max(S;�((S [ fig)c)) = max
�2�+i((S[fig)c)

v(S;�)

Clearly the max operator fails to satisfy Sign Independence. On the other hand,
the max operator satis�es Path Independence and the Weak Dummy Axiom.

These examples show that the axioms on restriction operators de�ned earlier
have some \bite". Indeed, the next two theorems provide characterizations of the
class of restriction operators which satisfy the two versions of the dummy axiom
along with the other axioms.
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Theorem 3 Let r be a restriction operator satisfying Path Independence, the Weak

Dummy Axiom, Scale Invariance and Sign Independence. Then, there exists �, such
that for all (N; v) 2 V and all i 2 N ,

v�i;r(S;�((S[fig)c)) = �
X

�2�+i((S[fig)c)

v(S;�)+(1�t�)v(S;�((S[fig)c)[fig) (1)

where t = j�+i((S [ fig)c)j.13 Moreover, if the restriction operator satis�es Non-

negativity, then 1
t�1 � � � 0.

Hence, Theorem 3 shows that restriction operators satisfying the given axioms
are a linear combination of the simple average operator and the trivial operator.
However, if the Weak Dummy Axiom is replaced by its stronger counterpart, then
we are left only with the trivial operator. This is the content of the next theorem.

Theorem 4 Let r be a restriction operator satisfying Path Independence, the Strong

Dummy Axiom, Scale Invariance and Sign Independence. Then r = triv.

We will show later that Path Independence, Scale Invariance, Sign Independence
and the Weak Dummy Axiom imply Limited Independence. Since Scale Invariance
implies Translation Invariance, the corollary below follows from Theorem 2.

Corollary 5 Let r be a restriction operator satisfying Path Independence, Scale

Invariance, Non-negativity and the Weak Dummy Axiom. Then, a value ' satis�es

r-consistency and the standard property on two-person games if and only if ' � Shr.

We end this section with a slightly di�erent version of Theorem 3. Here, we
replace Sign Independence and Non-negativity with Monotonicity.

De�nition 13 Let (N; v); (N; v0) 2 V such that v and v0 are the same except v(S;�(Nn
S)) > v0(S;�(N n S)) for some S � N and �(N n S) 2 �NnS. A restriction

operator r satis�es Monotonicity if for all i 2 N n S and for all � 2 �Nn(S+i),

v�i(S; �) � v0�i(S; �).

This axiom implies that rNi;S;�((S[fig)c) is monotonic for all i; S and �((S [fig)c).

Theorem 5 Let r be a restriction operator satisfying the Weak Dummy Axiom,

Scale Invariance, Path Independence and Monotonicity. Then, r must be one of the

following. For all (N; v) 2 V and all i 2 N ,

� There exists �, such that

v�i;r(S;�((S[fig)c)) = �
X

�2�+i((S[fig)c)

v(S;�)+(1�t�)v(S;�((S[fig)c)[fig)

where t = j�+i((S [ fig)c)j and 1
t�1 � � � 0.

13Note that �((S[fig)c)[fig) is an element of �+i((S[fig)c). So, the total weight on v(S;�(S[
fig)c)) [ fig) is (1� (t� 1)�).
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� v�i;r(S;�((S [ fig)c)) = max�2�+i((S[fig)c) v(S;�)

� v�i;r(S;�((S [ fig)c)) = min�2�+i((S[fig)c) v(S;�)

We have mentioned earlier that the max and min operators do not satisfy Sign
Independence. Essentially, this theorem shows that if Sign Independence is not
imposed on the restriction operator, then the only additional rules allowed are these
two operators.14

6 The Shapley Axioms

We now show that the class of values resulting from the restriction operators char-
acterised in Theorem 3 satisfy all the natural extensions of Shapley's classic axioms
to games in partition function form.

We start by de�ning these axioms.

De�nition 14 Let ' be a solution on V. Then, ' satis�es

(i) Linearity: if

(a) For all (N; v), (N; v0) 2 V, '(N; v + v0) = '(N; v) + '(N; v0); and

(b) For any scalar � 2 R and any game (N; v) 2 V, '(N;�v) = �'(N; v).

(ii) Symmetry: if for any permutation of � of N , '(N; �v) = �'(N; v).

(iii) E�ciency: if for all (N; v) 2 V,
P

i2N 'i(N; v) = v(N).

(iv) Weak Dummy Property: if for all (N; v) 2 V, 'i(N; v) = 0 if i is a type 1

dummy player.

(v) Strong Dummy Property: if for all (N; v) 2 V, 'i(N; v) = 0 if i is a type 2

dummy player.15

Suppose now that the restriction operator r satis�es Path Independence, Scale
Invariance, the Weak Dummy Axiom, Non-negativity and Sign Independence. Then,
r satis�es (1) in Theorem 3. In addition, to the fact that r is described by equation
(1), we use from Theorem 1 the fact that Shr(N; v) = Sh(N;wrv).

Consider, �rst the property of Linearity. Take any two games (N; v) and (N; v0).
Then, it is easy to check from (1), that

wrv+v0 = wrv + wrv0

14The proof of this theorem is quite long and involved. We have not reported it in the Appendix,
but it is contained in the Supplement of this paper.

15Notice that these Dummy properties are restrictions on the solution concept and are distinct
from the Dummy axioms which were imposed on the restriction operators.
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and for any scalar �,
wr�v = �wrv:

Moreover, since the Shapley value on W satis�es Linearity, it follows that

Shr(N; v + v0) = Sh(N;wrv) + Sh(N;wrv0) = Shr(N; v) + Shr(N; v0)

and

Shr(N;�v) = Sh(N;wr�v) = Sh(N;�wrv) = �Sh(N;wrv) = �Shr(N; v):

These are su�cient to show that Shr satis�es Linearity on V.
Now, consider any permutation � of N . Then,

wr�v = �wrv

Since the Shapley value satis�es Symmetry on W, this last equality shows that the
property of Symmetry can be extended to V. It is also obvious that Shr satis�es
E�ciency.

For the Weak Dummy Property, choose any (N; v) 2 V and suppose player i is
a dummy player of type 1 in v. Choose any S containing i. Now, from repeated
application of the Weak Dummy Axiom on r, i is a type 1 dummy player in v�S

c;r.
Hence,

v�S
c;r(S) = v�S

c;r(S n fig; fig)

Also,

wrv(S) = v�S
c;r(S) = v�S

c;r(S n fig; fig) = v�(S[fig)
c;r(S n fig) = wrv(S n fig)

This shows that i is a dummy player in wrv and by the Weak Dummy Property of
the Shapley value on TU games, Shri (N; v) = 0.

A similar analysis applies to the Strong Dummy Property and the Strong Dummy
Axiom.

Of course, there are other solution concepts outside class fShrg where r satis�es
the axioms speci�ed in Theorem 3 which also satisfy the Shapley axioms for partition
function games.16

7 Concluding Remarks

In this paper, we have used the tool of restriction operators to de�ne subgames of
partition function games. Once subgames are well de�ned, it is possible to use the
potential approach �a la Hart and Mas-Colell to construct values for partition func-
tion games. We show that if the restriction operator satis�es the basic assumption of
Path Independence, then it is possible to relate the potential of any partition function
game to that of a speci�c characteristic game. One can then de�ne the value of the

16See for instance [1], [3], [5], [6], [8], [10] and [13].
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partition function game to coincide with the Shapley value of the derived character-
istic function game. We also show that a large class of such values are characterised
by a natural extension of the reduced game consistency property of Hart and and
Mas-Colell and standardness. Finally, we adopt an axiomatic approach to narrow
down the class of permissible restriction operators. In this characterisation we use
Path Independence, Scale Invariance and the Weak Dummy Axiom. The last two
properties are parallel to the corresponding properties used by Shapley's [15] classic
characterisation.

We show that only a strong version of the Dummy player axiom yields a unique
value. This is in common with several recent contributions which possess the same
characteristic. That is, these papers also show that a large class of values satis�es a
set of basic axioms, and that a unique value is generated only if an additional axiom
is added to the basic set.

For instance, Macho-Stadler et al. [8] follow a two-stage procedure which they
call the \average approach". The average approach too generates a characteris-
tic function game from the partition function game by specifying that the worth
of each coalition S is the weighted average of the worths of embedded coalitions
(S;�) where � is some partition of the complementary coalition. The Symmetry
and Dummy axioms of Shapley impose some restrictions on the permissible sets of
weights. However, these permissible weights yield a large class of weighting schemes
and hence in a class of Shapley values. An additional axiom is then used to single out
a speci�c set of weights - this obviously yields a unique characteristic function game
for each partition function game. Furthermore, the value characterized by Albizuri,
Arin and Rubio [1] belongs to the values proposed by Macho-Stadler et al. [8] - it is
identical with the Shapley value associated with the simple average operator.

De Clippel and Serrano [5] follow Young's [19] approach for characteristic function
games. In particular, their basic axiom requires that if between two partition function
games v and v0, player i's marginal contributions vector to every embdedded coalition
is higher in v than in v0, then player i's value in v should also be at least as high
in v. However, this marginality principle too does not have enough bite to single
out a unique value. De Clippel and Serrano then de�ne player i's intrinsic marginal
contribution to an embedded coalition (S;�) to be the di�erence to S created if
i leaves S and remains alone instead of joining any element of the partition �.
They then show that only the triv-Shapley value satis�es the stronger marginality
principle.1718

Our approach includes all these extensions of the Shapley value from characteris-
tic function games to games in partition functions form. As our examples in Section
3.3 show, the r-Shapley values allow for taking simple or weighted averages, cap-
turing pessimistic or optimistic expectations and the triv-Shapley value. Theorem
3 even characterises the restriction operators which are a linear combination of the

17Fujinaki [6] is a variant of this marginality approach in that he uses di�erent exogenous weighting
schemes to aggregate the di�erent possibilities when a player i leaves a coalition.

18Pham Do and Norde [13] also characterize the triv-Shapley value using the Strong Dummy
Property for values.
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simple average approach and the triv-Shapley value. This captures simultaneously
the two ideas of the simple average approach and of any agent remaining alone once
he leaves a coalition.
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APPENDIX

In the Appendix we often use the following (simpli�ed) notation. Whenever there
is no scope for confusion, we will write a set S = fi; j; kg as ijk, etc. For any set
S and i 2 Sc, we write S + i to denote the set S [ fig, and S � i to denote the set
S � fig. Similarly, S + ij denotes the set S [ fi; jg. We will also write a partition
ffijg; fklgg as fij; klg, etc. That is elements in a partition will be separated by a
\comma".

Proof of Theorem 1:

We only need to prove (i) since (ii) is an immediate consequence of (i) and
Theorem 1 of Hart and Mas-Colell (1989). We prove (i) by induction on jN j.

If jN j = 1, say N = fig, then by de�nition of wrv, w
r
v(i) = v(i). Hence, (i) is

true for one person games since by de�nition of wrv, P (i; w
r
v) = wrv(i) = v(i). Also,

P r(i; v) = v(i) from the de�nition of a potential.
Let N be a player set and suppose by induction that (i) is true for all player sets

containing fewer than jN j players. Let i 2 N . We �rst show that for all S � N � i

wrv(S) = wrv�i;r(S): (2)

where of course v�i;r is the partition function induced by r on player set N � i. Note
that from Path Independence,

v�S
c

= (v�i)�(S
c�i) (3)

where we have dropped reference to the restriction operator for notational simplicity.
Hence, for all S � N � i, we have

wrv(S) = v�S
c

(S) = (v�i)�(S
c�i)(S) = wrv�i;r(S)

where the �rst and the third equality follow from the de�nition of w, and the second
equality follows from (3). Hence, (2) is true.

Let wrvjN�i denote the subgame of wrv on the player set N � i. Now we obtain

P r(N; v) =
v(N)

jN j
+
X
i2N

P r(N � i; v�i;r)

=
wrv(N)

jN j
+
X
i2N

P (N � i; wrv�i;r)

=
wrv(N)

jN j
+
X
i2N

P (N � i; wrvjN�i))

= P (N;wrv)

where the �rst equality follows from the de�nition of an r-potential, the second from
our induction hypothesis that (i) is true for all player sets containing fewer than jN j
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players, the third from (2), and the fourth from the de�nition of the characteristic
function potential. �

Before proving Theorem 2, we introduce a property which is of instrumental
importance for this proof. As we show, this property is satis�ed by all of the examples
given in the main text.

De�nition 15 A restriction operator r is Regular if for all solutions ', for all

(N; v) 2 V, and S � N , the reduced game v';rS satis�es the following for all R � S

(v';rS )�SnR;r(R) = v�SnR;r(R [ Sc)�
X
k2Sc

'k(R [ Sc; v�SnR;r)

Lemma 1 Let r be a restriction operator satisfying Path Independence. If r also

satis�es Limited Independence and Translation Invariance, then r satis�es Regular-
ity.

Proof. Let ' be a solution, (N; v) 2 V, and S � N . Then the reduced game
(S; v';rS ) 2 V. Choose any R � S. We will prove the result by induction on jS nRj.
In fact, to use induction, we will prove a slightly general result than required for
Regularity. This is as follows. Choose any R1 � R and �(R n R1). We will show
that

(v';rS )�SnR;r(R1;�(RnR1)) = v�SnR;r(R1[S
c;�(RnR1))�

X
k2Sc

'k(R1[S
c; v�(SnR1);r)

where Sc = N n S. Note that Regularity is a special case of the above statement,
where R = R1:

First, let us prove our claim when jS nRj = 1. Suppose S nR = fig. Then,

(v';rS )�i;r(R1;�(R nR1))

= rSi;R1;�(RnR1)

��
v';rS (R1;�)

�
�2�+i(RnR1)

�

= rSi;R1;�(RnR1)

0
@ v(R1 [ S

c;�)�
X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

!
�2�+i(RnR1)

1
A

= rSi;R1;�(RnR1)

�
(v(R1 [ S

c;�))�2�+i(RnR1)

�
�
X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

= rNi;R1[Sc;�(RnR1)

�
(v(R1 [ S

c;�))�2�+i(RnR1)

�
�
X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

= v�i;r(R1 [ S
c;�(R nR1))�

X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

where the �rst and the �fth equality use the de�nition of the restriction operator,
the second uses the de�nition of the reduced game v';rS , the third and the fourth
follow from Translation Invariance and Limited Independence of r respectively.
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Now, suppose that our claim is true for jS nRj < m. We will show that the
same is true when jS nRj = m. Suppose i 2 S n R. By Path independence,
(v';rS )�SnR;r can be obtained by removing players of S n R in any sequence. Thus
without loss of generality we can remove i after everyone else. Hence, (v';rS )�SnR;r =�
(v';rS )�(Sn(R[fig));r

��i;r
. For notational convenience, we will denote (v';rS )�(Sn(R[fig));r

as �v. Note that �v is a game on R[fig and Sn(R[fig) < m. Therefore the induction
hypothesis is applicable on �v. Then

(v';rS )�SnR;r(R1;�(R nR1))

= (�v)�i;r (R1;�(R nR1))

= r
R[fig
i;R1;�(RnR1)

�
(�v(R1;�))�2�+i(RnR1)

�

= r
R[fig
i;R1;�(RnR1)

0
@ v�(Sn(R[fig));r(R1 [ S

c;�)�
X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

!
�2�+i(RnR1)

1
A

= r
R[fig
i;R1;�(RnR1)

��
v�(Sn(R[fig));r(R1 [ S

c;�)
�
�2�+i(RnR1)

�
�
X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

= r
R[fig[Sc

i;R1[Sc;�(RnR1)

��
v�(Sn(R[fig));r(R1 [ S

c;�)
�
�2�+i(RnR1)

�
�
X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

=
�
v�(Sn(R[fig));r

��i;r
(R1 [ S

c;�(R nR1))�
X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

= v�SnR;r(R1 [ S
c;�(R nR1))�

X
k2Sc

'k(R1 [ S
c; v�(SnR1);r)

where the third equality follows from the induction hypothesis. The rest is exactly
the same steps as those in jS nRj = 1. Hence, r satis�es Regularity.

Proof of Theorem 2:

Throughout the proof, �x some restriction operator r satisfying Path Indepen-
dence, Limited Independence and Translation Invariance. By Lemma 1, r satis�es
Regularity. Since r is �xed, we omit all reference to r in the rest of the proof.

We �rst show that Sh satis�es consistency. Choose any (N; v) 2 V, and S � N .
We need to show that for all i 2 S,

Shi(N; v) = Shi(S; v
Sh
S ) where vShS is the reduced game on S:

For all R � S, and � 2 �SnR,

vShS (R;�) = v(R [ Sc;�)�
X
k2Sc

Shk(R [ Sc; v�SnR) (4)

where v�SnR is the subgame (of v) on the player set Sc [R.
Let w;wS and w�SnR be the characteristic function games associated with v; vShS

and v�SnR respectively. Let
�
vShS
��(SnR)

denote the subgame of vShS on the player
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set R. Since the restriction operator satis�es Regularity,

�
vShS

��(SnR)
(R) = v�(SnR)(R [ Sc)�

X
k2Sc

Shk

�
R [ Sc; v�(SnR)

�

Hence,

wS(R) =
�
vShS

��(SnR)
(R)

= v�(SnR)(R [ Sc)�
X
k2Sc

Shk

�
R [ Sc; v�(SnR)

�

= w(R [ Sc)�
X
k2Sc

Shk

�
R [ Sc; w�(SnR)

�

= w(R [ Sc)�
X
k2Sc

Shk (R [ Sc; wjR[Sc)

= wShS (R):

Therefore for all i 2 S;

Shi

�
S; vShS

�
= Shi (S;wS) = Shi

�
S;wShS

�
= Shi (N;w) = Shi (N; v) ;

where the third equality follows from consistency of the Shapley value on TU games.
That is, Sh satis�es consistency.

It is obvious that Sh satis�es the standard game property. We now prove the
converse by showing that there can be only one solution satisfying the standard
property on two-person games and r-consistency for any given r.

First, if ' is a solution satisfying these two properties, then ' must be e�cient.
The proof of this is very similar to that in Hart and Mas-Colell [5].

So, if n = 1, then 'i(i; v) = v(i) and so there must be a unique solution. Similarly,
the standard property on two-person games ensures that there is a unique solution
on all two-person games. Suppose now that there is a unique solution satsifying
consistency and the standard property on two-person games on all games (N; v) 2 V
when jN j < m.

Suppose now that jN j = m and both ' and  are two di�erent solutions satisfying
these two properties. Since ' and  are di�erent solutions, and both are e�cient,
there must exist (N; v) 2 V and i; j 2 N such that 'i(N; v) >  i(N; v), while
'j(N; v) <  j(N; v). De�ne S = fi; jg. Now,

v'S(i) = v(N � j; j)�
X
k 6=i;j

'k(N � j; v�j)

v S (i) = v(N � j; j)�
X
k 6=i;j

 k(N � j; v�j)
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From the induction hypothesis, ' and  coincide on (N � j; v�j). Hence,X
k 6=i;j

 k(N � j; v�j) =
X
k 6=i;j

'k(N � j; v�j)

This implies that
v'S(i) = v S (i)

Similarly,
v'S(j) = v S (j)

Then, from consistency,

'i(S; v
'
S) = 'i(N; v) >  i(N; v) =  i(S; v

 
S )

So, 'j(S; v
'
S) �  j(S; v

 
S ). This contradicts the assumption that 'j(N; v) <  j(N; v).�

Proof of Corollary 1:

We show that the max operator satis�es Path Independence and Translation
Invariance. Again, we omit any explicit reference to the operator in order to simplify
the notation.

Fix any game (N; v).
To check that the max operator satis�es Path Independence, choose any i; j 2 N ,

and S � N � ij. Let � � fT1; : : : ; TKg be any partition of (S + ij)c. Let �0 denote
the set of partitions of Sc satisfying

�0 = f�0 2 �Sc jT
0 2 �0 ! Tk � T 0 [ fi; jg for some k = 1; : : :Kg

That is, �0 is the set of partitions of Sc where each of i and j can join any of the
elements of �, or remain single or form the set fi; jg. Then,

v�ij(S;�) = max
�02�0

�
v(S;�0)

�
= v�ji(S;�)

This shows that the max operator satis�es Path Independence.
To check that max satis�es Translation Invariance, let x1; : : : ; xk and c be any

real numbers. Then,
max
l=1;:::;k

[xl � c] = max
l=1;:::;k

[xl]� c:

This shows that max satis�es Translation Invariance.
It is easy to see that the max operator satis�es Limited Independence. �

Proof of Corollary 2:

We show that the trivial operator satis�es Path Independence. It is straight-
forward to verify that it satis�es Limited Independence and Translation Invariance.
Again, we omit any explicit reference to the operator in order to simplify the nota-
tion.
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Fix any game (N; v). To check that the trivial operator satis�es Path Indepen-
dence, choose any i; j 2 N , and S � N � ij. Let � be any partition of (S + ij)c.
Then,

v�ij(S;�) = v(S;� [ fig [ fjg) = v�ji(S;�)

This shows that the trivial operator satis�es Path Independence. It is straightforward
that the trivial operator satis�es Translation Invariance and Limited Independence.
�

Proof of Corollary 3:

We �rst show that r� satis�es Path Independence. Pick any game (N; v) 2 V.
Choose any i; j 2 N , S � N � ij, and T = N � (S + ij). Let � 2 �T be such that
� � fT1; : : : ; TKg. We want to show that

v�ij(S;�) = v�ji(S;�)

Indeed,

v�ij(S;�) =
X

�02�+j(�)

�(S;�0)v�i(S; �0)

=
X

�02�+j(�)

�(S;�0)

2
4 X
�002�+i(�0)

�(S;�00)v(S : �00)

3
5

for some symmetric weight vector �. Similarly,

v�ji(S;�) =
X

�02�+i(�)

�(S;�0)

2
4 X
�002�+j(�0)

�(S;�00)v(S : �00)

3
5

Since � is symmetric, for each Tk 2 �, �(S; (� � Tk) [ (Tk + i)) = �(S; (� � Tk) [
(Tk + j)). Also, letting �1 � (� � (Tk [ Tl) [ fTk + i; Tl + jg), and �2 � (� � (Tk [
Tl) [ fTk + j; Tl + ig), we have �(S;�1) = �(S;�2). This is su�cient to show that
r� satis�es Path Independence.

Since the weight �(S;�) depends only on the size distribution of �, it is straight-
forward to check that r� satis�es Limited Independence. Similarly, Translation In-
variance also follows trivially. �

Proof of Corollary 4:

Let P be a partition of the universal set N. By Theorem 2 and its proof it su�ces
to show that rP satis�es both Path Independence and Regularity. Again, we omit
any explicit reference to the operator in order to simplify the notation.

Fix any game (N; v). To check that the P-coordinate operator satis�es Path
Independence, choose any i; j 2 N , and S � N � ij. Let � be any partition of
(S + ij)c. Now if (S + ij)c \ P 6= �, then v�ij(S;�) = 0 = v�ji(S;�); and if
(S + ij)c \ P = �, then v�ij(S;�) = v(S;Sc \ P) = v�ji(S;�). This shows that the
P-coordinate operator satis�es Path Independence.
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In order to check Regularity, let ' be a value, (N; v) 2 V and S � N . For all
R � S, we have by de�nition of rP

(v'S)
�SnR(R) = v'S(R; (SnR) \ P)

= v(R [ Sc; (SnR) \ P)�
X
k2Sc

'k(R [ Sc; v�SnR)

= v�SnR(R [ Sc)�
X
k2Sc

'k(R [ Sc; v�SnR);

which is the desired conclusion. �

The following lemmata are important for the proof of Theorem 3. Lemma 2
simply says that for any subgame, the function associating the worth of any coalition
S and a partition of its complement is identical with the one from where any member
of the partition all players except one are removed and all removed players join the
coalition. In other words, these functions are identical if in the subgame the partition
contains the same number of elements (and the same players left the original game).
The proof uses the Weak Dummy Axiom.

Lemma 2 Let r be a restriction operator satisfying Path Independence and the Weak

Dummy Axiom. Suppose N � N and i 2 N . Choose any S � (N � i) and any

partition �((S + i)c) = fS1; : : : ; SKg. For any choice of jk 2 Sk; k = 1; : : :K, de�ne

N 0 = [Kk=1(Sk � jk). Then r
N
i;S;�((S+i)c) = rNi;S[N 0;�t(fj1;:::;jKg).

Proof. Consider a game (N; v).

v�i(S;�((S + i)c)) = rNi;S;�((S+i)c)(fxikg
K
k=1; x0)

v�i(S [N 0;�t(fj1; j2; : : : ; jKg)) = rNi;S[N 0;�t(fj1;:::;jKg)(fzikg
K
k=1; z0)

where for each k = 1; : : :K,

(i) xik = v(S; fS1; : : : ; Sk�1; Sk + i; Sk+1; : : : ; SKg)

(ii) zik = v(S [N 0; ffj1g; : : : ; fjk�1g; fjk; ig; jk+1; : : : ; fjKgg)

(iii) x0 = v(S; fS1; S2 : : : ; SK ; figg)

(iv) z0 = v(S [N 0;�t(fj1; : : : ; jK ; ig))

Let us choose all the members of N 0 to be dummy players of type 1 in (N; v). By
the Weak Dummy Axiom, members of N 0 remain dummy players of type 1 in v�i.
Hence, v�i(S;�((S + i)c)) = v�i(S [N 0;�t(fj1; : : : ; jKg)).

Moreover, for all k = 1; : : :K,

zik = v(S [N 0; ffj1g; : : : ; fjk�1g; fjk; ig; fjk+1g; : : : ; fjKgg):

= v(S; fS1; : : : ; Sk�1; Sk + i; Sk+1; : : : ; SKg)

= xik
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and z0 = v(S [N 0;�t(fj1; : : : ; jK ; ig)) = v(S; fS1; S2 : : : ; SK ; figg) = x0.
Note that this choice of dummy players does not impose any restrictions on the

vector (fzikg
K
k=1; z0) and hence on (fxikg

K
k=1; x0): Therefore for any (fxikg

K
k=1; x0),

rNi;S[N 0;�t(fj1;:::;jKg)(fzikg
K
k=1; z0) = rNi;S[N 0;�t(fj1;:::;jKg)(fxikg

K
k=1; x0) = rNi;S;�((S+i)c)(fxikg

K
k=1; x0)

Hence, rNi;S;�((S+i)c) = rNi;S[N 0;�t(fj1;:::;jKg).

Lemma 3 Let r be a restriction operator satisfying Weak Dummy Axiom. Consider

a game (N; v). Suppose i; j 2 N and S � N nfijg. For all � 2 (�t)+i((S+ ij)c); de-
note v0(S+j;�) = v(S;�0 where �0 = �+j. If v

�
S;�t(Sc)

�
= v

�
S; ij; �t((S + ij)c)

�
then rNi;S;�((S[fig)c)

�
(v(S;�))�2�+i((S[fig)c)

�
= rNi;S+j;�t((S+ij)c)

�
(v0(S + j;�))�2�+i((S+ij)c)

�
.

Proof. Let us choose j to be a type 1 dummy player in (N; v). By Weak Dummy
Axiom, j is also a type 1 dummy player in (N; v�i), which implies v�i(S;�t((S +
i)c)) = v�i(S + j;�t((S + ij)c)). Thus

rNi;S;�t((S+i)c)
�
(v(S;�))�2(�t)+i((S[fig)c)

�
= rNi;S+j;�t((S+ij)c)

�
(v(S + j;�))�2(�t)+i((S+ij)c)

�
Our choice of j as a type 1 dummy player in v imposes only one restriction on the
variables of rNi;S;�t((S+i)c), which is v

�
S;�t(Sc)

�
= v

�
S; ij; �t((S + ij)c)

�
. It does

not impose any restriction on the remaining variables. However, our choice also
guarantees that for all � 2 (�t)+i((S+ ij)c), v(S+ j;�) = v(S;�0). Hence the result
follows.

We now show that Scale Invariance and Sign Independence imply a stronger form
of Scale Invariance.

De�nition 16 A restriction operator satis�es Scale Invariance* if if for all (N; v); (N; v0) 2
V, if v = a+ bv0 for some a; b then for all i 2 N , v�i = a+ bv0�i.

That is,unlike Scale Invariance, the antecedent of Scale Invariance* does not impose
the requirement that b > 0.

Lemma 4 If a restriction operator r satis�es Scale Invariance and Sign Indepen-

dence, then it satis�es Scale Invariance*.

Proof. Consider games (N; v); (N; �v), where v; �v are such that v = �b�v, where
b > 0. For any S � N , let

aS = min
�2�Sc

v(S;�)

and
a = min

S�N
aS

Then, �a+ v � 0. By Scale Invariance, for all i 2 N , (�a+ v)�i = �a+ v�i.
From Sign Independence, (a� v)�i = a� v�i. Also a� v = a+ b�v and by Scale

Invariance, (a+ b�v)�i = a+ b�v�i.
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Now we must have �v�i = b�v�i. So, Scale Invariance* is satis�ed.

The next lemma shows that the removal of a type 1 dummy player from a game
does not a�ect the other players.

Lemma 5 Let r be a restriction operator satisfying Scale Invariance*. Consider a

game (N; v) where i is a type 1 dummy player. Choose any S � N�i and a partition
�(N � (S + i)). Then v�i(S;�(N � (S + i))) = v(S + i; �(N � (S + i))).

Proof. Since i is a type 1 dummy player, we have v(S;�) = v(S+ i;�(N � (S+ i)))
for all � 2 �+i(N � (S + i)): Thus

v�i(S;�(N � (S + i))) = rNi;S;�(N�(S+i))

�
(v(S;�))�2�+i(N�(S+i))

�
= rNi;S;�(N�(S+i))

�
(v(S + i;�(N � (S + i)))�2�+i(N�(S+i))

�
= v(S + i;�(N � (S + i)))

where the last equality is a consequence of Scale Invariance*.

We use Lemma 5 to prove that Limited Independence is implied by Path In-
dependence, Scale Invariance* and the Weak Dummy Axiom. We will use limited
Independence in the proof of Theorem 3.

Lemma 6 Let r be a restriction operator satisfying Path Independence, Scale In-

variance* and the Weak Dummy Axiom. Then, r satis�es Limited Independence.

Proof. Let R = N2�N1. Let us choose a game (N2; v) in which R is the set of type
1 dummy players. Note that v�R is a game on N1. Take any S � (N1 � i) and any
partition �(T ), where T = N1� (S+ i). Now consider the subgame of v on (N2� i),
generated by r. By repeated use of Lemma 5 and Weak Dummy Axiom, we get

v�i(S+R;�(T )) = rN2

i;S+R;�(T )

�
(v(S +R;�))�2�+i(T )

�
= rN2

i;S+R;�(T )

�
(v�R(S;�))�2�+i(T )

�
(5)

Moreover, Weak Dummy Axiom ensures that R is still the set of type 1 dummy
player in v�i. Once again by repeated use of Lemma 2 and Weak Dummy Ax-
iom, we get, v�i(S + R;�(T )) = v�(i+R)(S;�(T )). Since r is Path Independent,
v�(i+R) is also the subgame of v�R on (N1 � i). That is, v�(i+R)(S;�(T )) =
rN1

i;S;�(T )

�
(v�R(S;�))�2�+i(T )

�
. Hence, from Equation 5,

rN2

i;S+R;�(T )

�
(v�R(S;�))�2�+i(T )

�
= rN1

i;S;�(T )

�
(v�R(S;�))�2�+i(T )

�
Note that our choice of dummy players does not impose any restriction on

the vector fv(S + R;�)g�2�+i(T ) or equivalently on fv�R(S;�)g�2�+i(T ). Therefore

rN1

i;S;�(T ) = rN2

i;S+R;�(T ).

Proof of Theorem 3: Choose any i 2 N and S � N� i. We prove the theorem
by induction on the number of elements in �+i(Sc).
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Suppose j�+i(Sc)j = 1. Then v�i(S) = ri(v(S; fig)). By Scale Invariance,
ri(v(S; i)) = v(S; i). Hence the induction hypothesis is satis�ed.

Now, suppose j�+i(Sc)j = 2. Let us �rst show that the induction hypothesis
holds for partitions of the type (S; j). From our speci�cation,

v�i(N � ij; j) = ri(v(N � ij; ji); v(N � ij; j; i))

By Scale Invariance*,

ri(v(N � ij; ji); v(N � ij; j; i)) = �Ni v(N � ij; ji) + (1� �Ni )v(N � ij; j; i)

We have already proved that v�ij(S) = v�i(S; j). Hence,

v�ij(N � ij) = �Ni v(N � ij; ji) + (1� �Ni )v(N � ij; j; i)

By similar arguments,

v�ji(N � ij) = �Nj v(N � ij; ji) + (1� �Nj )v(N � ij; j; i)

However, Path Independence implies v�ij(N � ij) = v�ji(N � ij). Therefore �Ni =
�Nj = �N (say). Using the same argument on N, we get,

rNi (v(N� ij; ji); v(N� ij; j; i)) = �Nv(N� ij; ji) + (1� �N)v(N� ij; j; i)

By Lemma 6, rNi;N�ij;�t(fjg) = rNi;N�ij;�t(fjg); hence �
N = �N. Therefore the coef-

�cient does not depend upon N and we will simply represent it by �.
We can use Lemma 2 to extend our analysis for all partitions with j�+i(Sc)j = 2.
So, the theorem is true when �+i(Sc) has no more than two elements. Suppose

the theorem is true for all partitions when �+i(Sc) hasK or less elements for someK.
We want to show that the theorem remains true when �+i(Sc) has K + 1 elements.

Choose N such that jN j � K + 2. Choose i 2 N and S � N � i such that
�((S + i)c) = �t((S + i)c) has exactly K elements. Hence, �+i((S + i)c) has K + 1
elements.

Our �rst aim is to calculate v�i(S;�t((S + i)c)), with the help of the induction
hypothesis.

From our speci�cation,

v�i(S;�t((S + i)c)) = ri
�
fv(S; ik; �t((S + ik)c))gk=2(S+i); v(S;�

t(Sc))
�

Denoting v(S; ik; �t((S + ik)c)) = xik and v(S;�t(Sc)) = x0, we can rewrite the
previous equation as

v�i(S;�t((S + i)c)) = ri(fxikgk=2S+i; x0)

Similarly, for any m 6= i, we can write v�m(S;�t((S +m)c)) as

v�m(S;�t((S +m)c)) = rm(fxmkgk=2S+m; x0)
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where xmk = v(S;mk; �t((S +mk)c)), and xim = xmi.
We can use the induction hypothesis to calculate v�im(S;�t((S+ im)c)). Indeed,

v�im(S;�t((S + im)c))

= �
X

k=2(S+im)

v�i(S;mk; �t((S + imk)c)) + (1�K�)v�i(S;�t((S + i)c))

= �
X

k=2(S+im)

[�
X

`=2(S+imk)

v(S;mk; i`; �t((S + imk`)c)) + �v(S;mki; �t((S + imk)c))

+(1�K�)v(S;mk; �t((S +mk)c))] + (1�K�)v�i(S;�t((S + i)c)) (6)

Similarly,

v�mi(S;�t((S + im)c))

= �
X

k=2(S+im)

[�
X

`=2(S+imk)

v(S; ik;m`; �t((S + imk`)c) + �v(S;mki; �t((S + imk)c))

+(1�K�)v(S; ik; �t((S + ik)c))]

+(1�K�)v�m(S;�t((S +m)c)) (7)

From Path Independence,

v�im(S;�t((S + im)c)) = v�mi(S;�t((S + i;m)c)) (8)

Also,X
k=2(S+im)

X
`=2(S+imk)

v(S;mk; i`; �t((S + imk`)c)) =
X

`=2(S+im)

X
k=2(S+im`)

v(S;mk; i`; �t((S + imk`)c))

=
X

k=2(S+im)

X
`=2(S+imk)

v(S; ik;m`; �t((S + imk`)c))

Thus, �
v�i(S;�t((S + i)c))� v�m(S;�t((S +m)c))

�
= �

X
k=2(S+im)

�
v(S; ik; �t((S + ik)c))� v(S;mk; �t((S +mk)c))

�

= �
X

k=2(S+im)

(xik � xmk) (9)

By choosing xik = xmk � xk for all k =2 (S + im), we obtain

ri(fxikgk=2(S+i); x0) = rm(fxmkgk=2(S+m); x0) � r(fxkgk=2(S+i); x0) (10)

So, from (9),

r(fxikgk=2(S+i); x0) = �
X

k=2(S+im)

(xik � xmk) + r(fxmkgk=2(S+m); x0) (11)
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Let p =2 (S + im) be a dummy player of type 1 in v. Then, p is also a dummy
player in v�i, and so

v�i(S;�t((S + i)c)) = v�i(S + p;�t((S + ip)c))

From the induction hypothesis,

v�i(S+p;�t((S+ip)c)) = �
X

k=2(S+ip)

v(S+p; ki; �t((S+ipk)c))+(1�K�)v(S+p;�t((S+p)c))

Since p is a dummy player, v(S + p; ki; �t((S + ikp)c)) = v(S; ki; �t((S + ik)c))
and v(S+ p;�t((S+ p)c)) = v(S;�t(Sc)). Also, v(S; pi; �t((S+ p)c)) = v(S;�t(Sc)).
So,

v�i(S;�t((S + i)c)) = v�i(S + p;�t((S + i; p)c))

= �
X

k=2(S+ip)

v(S; ki; �t((S + ik)c)) + (1�K�)v(S;�t(Sc))

= �
X

k=2(S+i)

v(S; ki; �t((S + ik)c)) + (1� (K + 1)�)v(S;�t(S))

That is,

r(fxikgk=2(S+i); x0) = �
X

k=2(S+i)

xik + (1� (K + 1)�)x0 (12)

Notice that this equality is proved under the assumption that xip = x0, and so we
do not as yet have a general expression for r.

Finally, from (11),

r(fxmkgk=2(S+m); x0) = �
X

k=2(S+i)

xik + (1� (K + 1)�)x0 � �
X

k=2(S+im)

(xik � xmk)

= xmi + �
X

k=2(S+im)

xmk + (1� (K + 1)�)x0

= �
X

k=2(S+m)

xmk + (1� (K + 1)�)x0

Hence,

v�i(S;�t((S + i)c)) = �
X

k=2(S+i)

v(S; ik; �t((S + i; k)c)) + (1� (K + 1)�)v(S;�t(S))

We can use Lemma 2 to extend our analysis for all partitions with j�+i(S)j =
K + 1. This completes the induction step.

In order to complete the proof of the theorem, we have to demonstrate the
implication of Non-negativity. Consider a game (N; v) 2 V such that for all S � N ,

(i) v(S; �) = 0 if there is some i 2 Sc such that fig 2 �.
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(ii) v(S; �) > 0 otherwise.

Now, suppose � < 0. Choose any S � N and any i =2 S. Then,

v�i(S; �((S [ fig)c)) = �
X

�2�+i((S[fig)c)

v(S;�) < 0

where the �rst inequality follows from the fact that v(S;�) = 0 if fig 2 �.
But, this violates Non-negativity, and so � � 0.
This concludes the proof of Theorem 3. �

Proof of Theorem 4:

Suppose the restriction operator satis�es Strong Dummy Axiom, Scale Invari-
ance, Monotonicity and Path Independence. Then, for all i 2 N , for all v,

v�i(S;�t((S + i)c)) = v(S;�t((S + i)c) [ fig)

That is, the Strong Dummy Axiom implies that � = 0. This can be checked as
follows. Let N = f1; 2; 3; 4g. By Theorem 3,

v�4(f1; 2g; f3g) = �v(f1; 2g; f3; 4g) + (1� �)v(f1; 2g; f3g; f4g)

v�4(f1g; f2g; f3g) = �v(f1g; f2g; f3; 4g) + �v(f1g; f2; 4g; f3g) + (1� 2�)v(f1g; f2g; f3g; f4g)

Suppose 2 is a dummy player of type 2 in v. By the Strong Dummy Axiom, player
2 must be a type 2 dummy player in v�4. Thus, v�4(f1; 2g; f3g) = v�4(f1g; f2g; f3g).
This is only possible if � = 0, because the assumption of type 2 dummy player does
not impose any restriction on v(f1g; f2; 4g; f3g). Hence the result. It is easy to check
that this restriction operator will satisfy all the axioms. �

Proof of Corollary 5:

Suppose r satis�es Path Independence, Scale Invariance*, Non-negativity and
the Weak Dummy Axiom. In view of Theorem 2 and its proof, it is su�cient to
show that r satis�es Regularity.

Let wS be the TU game associated with vSh
r

S . Thus, wS(R) =
�
vSh

r

S

��(SnR)
(R).

By repeated use of Theorem 3,�
vSh

r

S

��(SnR)
(R) =

X
�2�SnR

��v
Shr
S (R;�)

=
X

�2�SnR

��

"
v(R [ Sc;�)�

X
k2Sc

Shrk

�
v�(SnR)

�#

=
X

�2�SnR

��v(R [ Sc;�)�

"X
k2Sc

Shrk

�
v�(SnR)

�#24 X
�2�(SnR)

��

3
5

= v�(SnR)(R [ Sc)�
X
k2Sc

Shrk

�
v�(SnR)

�
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One can check that �� = �(jSnRj�j�j)�
jP j�1
k=0 (1 � k�) and

P
�2�SnR

�� = 1. of

course, the actual form of �� is not important. What is important is that the
restriction operator is linear, and that �� does not depend upon T in v�(SnR)(T ). �
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Below we provide a proof of Theorem 5 in the main text.

De�nition 13 Let (N; v); (N; v0) 2 V such that v and v0 are the same except v(S;�(Nn
S)) > v0(S;�(N n S)) for some S � N and �(N n S) 2 �NnS. A restriction

operator r satis�es Monotonicity if for all i 2 N n S and for all � 2 �Nn(S+i),

v�i(S; �) � v0�i(S; �).

This axiom implies that rNi;S;�((S[fig)c) is monotonic for all i; S and �((S [fig)c).

Theorem 5 Let r be a restriction operator satisfying the Weak Dummy Axiom,

Scale Invariance and Path Independence and Monotonicity. Then, r must be one of

the following. For all (N; v) 2 V and all i 2 N ,

� There exists �, such that

v�i;r(S;�((S[fig)c)) = �
X

�2�+i((S[fig)c)

v(S;�)+(1�t�)v(S;�((S[fig)c)[fig)

where t = j�+i((S [ fig)c)j and 1
t�1 � � � 0.

� v�i;r(S;�((S [ fig)c)) = max�2�+i((S[fig)c) v(S;�)

� v�i;r(S;�((S [ fig)c)) = min�2�+i((S[fig)c) v(S;�)

Proof. As in Theorem 3, we prove this theorem by induction on the number of
elements in �+i(Sc).

Suppose j�+i(Sc)j = 1. Then v�i(S) = ri(v(S; fig)). By Scale Invariance,
ri(v(S; i)) = v(S; i). Hence the induction hypothesis is satis�ed.

Now, suppose j�+i(Sc)j = 2. Let us �rst show that the induction hypothesis
holds for partitions of the type (S; j). From our speci�cation,

v�i(S; j) = ri(v(S; ji); v(S; j; i))

1



By Scale Invariance,

ri(v(S; ji); v(S; j; i)) =

�
�Ni v(S; ji) + (1� �Ni )v(S; j; i) if v(S; ji) � v(S; j; i)
�Ni v(S; ji) + (1� �Ni )v(S; j; i) if v(S; ji) < v(S; j; i)

Moreover by Monotonicity, 1 � �Ni ; �
N
i � 0.

As in Theorem 3, we can show that �Ni and �Ni is independent of i and N . Thus
we can simply write

r(v(S; ji); v(S; j; i)) =

�
�v(S; ji) + (1� �)v(S; j; i) if v(S; ji) � v(S; j; i)
�v(S; ji) + (1� �)v(S; j; i) if v(S; ji) < v(S; j; i)

(1)

where 1 � �; � � 0.
We can use Lemma 2 to extend our analysis for all partitions with j�+i(Sc)j = 2.

Next, we will show that � and � must satisfy one of the following three conditions:
(i) � = �, (ii) � = 1 and � = 0, (iii) � = 0 and � = 1. Note that this will complete
the proof for j�+i(Sc)j = 2, because case (ii) and case (iii) correspond to max and
min respectively.

Choose any i; j; k 2 N . Let us denote N n fi; j; kg by T . By path indepen-
dence v�ij(T ; k) = v�ji(T ; k). We also know, v�ij(T ; k) is a convex combination of
v�i(T ; kj) and v�i(T ; k; j) satisfying (1). v�i(T ; kj) in turn is a convex combination
of v(T ; ikj) and v(T ; kj; i) satisfying (1). Moreover if v(T ; k; ji) = v(T ; k; j; i) then
by Lemma 3, v�i(T ; k; j) has the same functional form as v�i(T + j; k). That is,
v�i(T ; k; j) is a convex combination of v(T ; ik; j) and v(T ; k; ij) satisfying (1). A
similar string of functional forms also hold for v�ji(T ; k). We will choose di�erent
values for v(T ; ikj), v(T ; kj; i), v(T ; ki; j), v(T ; k; ij) and v(T ; k; j; i) and exploit the
equality v�ij(T ; k) = v�ji(T ; k) to establish the relation between � and �. In what
follows, we will always choose v(T ; k; ji) = v(T ; k; j; i) so that Lemma 3 can be used
to compute v�i(T ; k; j) and v�j(T ; k; i).

First, we will prove that if � = 1 or 0 then 1 > � > 0 is not possible. Let us choose
v such that v(T ; k; ij) > v(T ; ki; j) > v(T ; kij) > v(T ; kj; i) and [v(T ;k;ij)�v(T ;ki;j)]

[v(T ;kij)�v(T ;kj;i)] >
�

1�� (this choice is possible because � 6= 1). Now we will compute v�ij(T ; k) and

v�ji(T ; k).
Since v(T ; kij) > v(T ; kj; i), by (1) v�i(T ; kj) = �v(T ; kij) + (1 � �)v(T ; kj; i).

Since v(T ; ki; j) < v(T ; k; ij), by (1) v�i(T ; k; j) = �v(T ; ki; j) + (1 � �)v(T ; k; ij).
Moreover by our choice v(T ; k; ij) and v(T ; ki; j) is greater than v(T ; kij) and v(T ; kj; i).
Hence v�i(T ; kj) < v�i(T ; k; j). Thus by (1),

v�ij(T ; k) = �v�i(T ; kj) + (1� �)v�i(T ; k; j)

= � [�v(T ; kij) + (1� �)v(T ; kj; i)] + (1� �) [�v(T ; ki; j) + (1� �)v(T ; k; ij)]

(2)

On the other hand, since v(T ; kij) < v(T ; ki; j), we have v�j(T ; ki) = �v(T ; kij)+
(1 � �)v(T ; ki; j). Similarly, v�j(T ; k; i) = �v(T ; kj; i) + (1 � �)v(T ; k; ij) because
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v(T ; kj; i) < v(T ; k; ij). Due to our choice [v(T ;k;ij)�v(T ;ki;j)]
[v(T ;kij)�v(T ;kj;i)] > �

1�� , we also have

v�j(T ; ki) < v�j(T ; k; i). Therefore,

v�ji(T ; k) = �v�j(T ; ki) + (1� �)v�j(T ; k; i)

= � [�v(T ; kij) + (1� �)v(T ; ki; j)] + (1� �) [�v(T ; kj; i) + (1� �)v(T ; k; ij)]

(3)

Since v�ij(T ; k) = v�ji(T ; k), in (2) and (3), the coe�cients of v(T ; kij) must be the
same. That is �(� � �) = 0 which is not possible if � = 1 or 0 and 1 > � > 0.

Next, we will show that if 1 > � > 0 then � 6= � is impossible. Let us choose v such
that v(T ; kij) > v(T ; kj; i) > v(T ; k; ij) > v(T ; ki; j) and [v(T ;k;ij)�v(T ;ki;j)]

[v(T ;kij)�v(T ;kj;i)] > �
1��

(this choice is possible because � 6= 1). As in the previous case, v(T ; kij) > v(T ; kj; i)
implies v�i(T ; kj) = �v(T ; kij)+(1��)v(T ; kj; i) and v(T ; ki; j) < v(T ; k; ij) implies
v�i(T ; k; j) = �v(T ; ki; j) + (1� �)v(T ; k; ij). By our choice v(T ; kij) and v(T ; kj; i)
is greater than v(T ; k; ij) and v(T ; ki; j). Hence v�i(T ; kj) > v�i(T ; k; j). By (1),

v�ij(T ; k) = � [�v(T ; kij) + (1� �)v(T ; kj; i)]+(1��) [�v(T ; ki; j) + (1� �)v(T ; k; ij)]

On the other hand, since v(T ; kij) > v(T ; ki; j), we have v�j(T ; ki) = �v(T ; kij) +
(1 � �)v(T ; ki; j). Similarly, v�j(T ; k; i) = �v(T ; kj; i) + (1 � �)v(T ; k; ij) because

v(T ; kj; i) > v(T ; k; ij). Due to our choice [v(T ;k;ij)�v(T ;ki;j)]
[v(T ;kij)�v(T ;kj;i)] > �

1�� , we also have

v�j(T ; ki) < v�j(T ; k; i). Therefore,

v�ji(T ; k) = � [�v(T ; kij) + (1� �)v(T ; ki; j)]+(1��) [�v(T ; kj; i) + (1� �)v(T ; k; ij)]

To have v�ij(T ; k) = v�ji(T ; k), the coe�cients of v(T ; kij) must be the same. That
is �(� � �) = 0 which is not possible when 1 > � > 0 and � 6= �.

Therefore we have shown that for all partitions with j�+i(Sc)j = 2, reduction
operator is one of the following. For any S � N

v�i(S;N n (S + i)) = r(v(S;N n S); v(S;N n (S + i); i))

=

8<
:

�v(S;N n S) + (1� �)v(S;N n (S + i); i)
max [v(S;N n S); v(S;N n (S + i); i)]
min [v(S;N n S); v(S;N n (S + i); i)]

where 1 � � � 0.
So, the theorem is true when �+i(Sc) has no more than two elements. Now

suppose that the theorem is true for all partitions when �+i(Sc) has K � 1 or less
elements. There are three possibilities.

� If there exists � such that

v�i(S;�((S[fig)c)) = �
X

�2�+i((S[fig)c)

v(S;�)+(1�t�)v(S;�((S[fig)c)[fig)

then we have already proved in Theorem 3 that the functional form remains
the same when �+i(Sc) has K elements.
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� Next we will show that if v�i;r(S;�((S [ fig)c)) = max�2�+i((S[fig)c) v(S;�)

then it has the same functional form when �+i(Sc) has K elements.

� The third possibility is v�i;r(S;�((S [ fig)c)) = min�2�+i((S[fig)c) v(S;�).
Proof of this part is similar to max and hence will be ommitted.

Let us choose N such that jN j � K+1. Choose S � N such that Sc has exactly
K elements. Without loss of genrality, suppose Sc = f1; 2; : : : ;Kg. Our �rst aim
is to calculate v�i(S;�t((S + i)c)) for all i 2 Sc., with the help of the induction
hypothesis,

From our speci�cation,

v�i(S;�t((S + i)c)) = ri
�
fv(S; ik; �t((S + ik)c))gk=2(S+i); v(S;�

t(Sc))
�

Let Ri be the set of partitions of Sc that have been used in the above computation.
That is � 2 Ri implies either � =

�
ik; �t((S + ik)c

	
for some k =2 (S + i) or � =

�t(Sc). Note that
��Ri

�� = K1. So, v�i(S;�t((S + i)c)) = ri (fv(S;�)g�2Ri). Now,
by Lemma 3, if v(S;�t(Sc)) = v(S; ik; �t((S + ik)c)) for some k 2 (S + i)c then
ri has the same functional form as rNi;S+k;�t(S+ik)c . From the induction hypothesis

we also know that rNi;S+k;�t(S+ik)c is a max function because
�����t�+i

(S + ik)c
��� =�����t�+i

(S + i)c
��� � 1. Therefore, if v(S;�t(Sc)) = v(S; ik; �t((S + ik)c)) for some

k 2 (S+i)c then ri (fv(S;�)g�2Ri) = max�2Ri v(S;�). This leads us to the following
properties of ri.

(A1) If v(S; il; �t((S + il)c)) = max�2Ri v(S;�) for some l 2 (S + i)c then

max
�2Ri

v(S;�) � ri (fv(S;�)g�2Ri) � max
�2Rinfil;�t((S+il)cg

v(S;�)

The proof of (A1) is as follows. Let us choose a v�, same as v except v�(S; il; �t((S+
il)c) = v(S;�t(Sc)) = v�(S;�t(Sc)). Since v�(S; il; �t((S + il)c) = v�(S;�t(Sc)), we
have

ri

�
fv�(S;�)g�2Ri

�
= max

�2Ri
v�(S;�) = max

�2Rinfil;�t((S+il)cg
v�(S;�) = max

�2Rinfil;�t((S+il)cg
v(S;�)

where the second equality follows from v�(S; il; �t((S + il)c) = v�(S;�t(Sc)) and
the last equality follows from our choice of v�. However, v(S; il; �t((S + il)c)) =
max�2Ri v(S;�) implies v(S; il; �t((S + il)c)) � v(S;�t(Sc)) = v�(S; il; �t((S + il)c).
By Monotonicity, ri (fv(S;�)g�2Ri) � ri

�
fv�(S;�)g�2Ri

�
= max�2Rinfil;�t((S+il)cg v(S;�).

The upperbound can be proved by choosing v��, same as v except v��(S;�t(Sc)) =
v(S; il; �t((S + il)c). Since v��(S;�t(Sc)) = v��(S; il; �t((S + il)c), we have

ri

�
fv��(S;�)g�2Ri

�
= max

�2Ri
v��(S;�) = v��(S; il; �t((S + il)c) = v(S; il; �t((S + il)c)

1Ri \Rj =
��

ij; �t((S + ij)c
	
; �t(Sc)

	
and \iR

i = �t(Sc)
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By Monotonicity, ri (fv(S;�)g�2Ri) � ri
�
fv��(S;�)g�2Ri

�
= v(S; il; �t((S + il)c) =

max�2Ri v(S;�).
(A2) If v(S;�t(Sc)) = max�2Ri v(S;�) then ri (fv(S;�)g�2Ri) � max�2Rin�t(Sc) v(S;�).

A proof similar to that of (A1) can be constructed by choosing v�, such that it is
the same as v except v�(S;�t(Sc)) = max�2Rin�t(Sc) v(S;�).

We will use (A1) and (A2) in the following section of our proof, where we identify
the functional form of ri. This will be done using several steps, which are as follows.

Step 1 If v(S;��) = max�2Ri v(S;�) for some �� 2 Rin�t(Sc) then ri (fv(S;�)g�2Ri) =
v(S;��)

Step 2 Suppose v and v� are two games such that v(S;�t(Sc)) = max�2Ri v(S;�)
and v�(S;�t(Sc)) = max�2Ri v�(S;�). Moreover for some �� 2 Ri n �t(Sc),
v(S;��) = max�2Rin�t(Sc) v(S;�) and v�(S;��) = max�2Rin�t(Sc) v

�(S;�). Then

ri (fv(S;�)g�2Ri) = ri
�
fv�(S;�)g�2Ri

�
.

Step 3 If v(S;�t(Sc)) = max�2Ri v(S;�) then ri (fv(S;�)g�2Ri) = �max�2Rin�t(Sc) v(S;�)+
(1� �)v(S;�t(Sc)), 0 � � � 1.

Step 4 � = 0. That is, if v(S;�t(Sc)) = max�2Ri v(S;�) then ri (fv(S;�)g�2Ri) =
v(S;�t(Sc))

Note that Step 1 and Step 4 together will imply ri (fv(S;�)g�2Ri) = max�2Ri v(S;�).
Step 1 shows that if any variable other than v(S;�t(Sc)) is the maximum then ri
is a max function. Step 2 to 4 deals with the case when v(S;�t(Sc)) is the maxi-
mum. Step 2 says that ri depends only on the highest and the second highest value
as long as the partition with the second highest value remains the same. Step 3
extends Step 2 by showing that the same is true even when second highest par-
tition does not remain the same. Moreover ri is a convex combination of highest
and the second highest value. Step 4 together with Step 1 completes the proof,
ri (fv(S;�)g�2Ri) = max�2Ri v(S;�).

We will use the following relation in proving Step 1 to Step 4. Suppose � is a pe-
rumtation of the elements in Sc. Let v�� be the restricted game on S, where agents in

Sc are removed sequentially according to �. That is v�� =
���

v��(1)
���(2)

�
� � �
���(K)

.

We are going to compute v��(S). Note that the only functional form unknown in
this computation is r�(1) because it involves K variables. All other restriction opera-
tors have less than K variables and hence by induction hypothesis are max functions.
One can check that,

v��(S) = max

�
max

�2�(Sc)nR�(1)
v(S;�); r�(1)

�
fv(S;�)g�2R�(1)

��
(4)

Since � is an arbitrary permutation, it will be su�cient to identify the functional
form of r�(1) by proving step 1 to 4.

Proof of Step 1:
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Suppose v(S;��) = max�2Ri v(S;�) for some �� 2 Ri n �t(Sc). Without loss of
generality, suppose �� =

�
�(1)�(m); �t((S + �(1)�(m))c

	
. By (A1), r�(1)

�
fv(S;�)g�2R�(1)

�
�

max�2Rin��v(S;�). For all � 2 �(Sc) n R�(1), choose v(S;�) � max�2Rin��v(S;�).
Therefore,

v��(S) = r�(1)
�
fv(S;�)g�2R�(1)

�
(5)

Now choose another permutations & such that &(1) 6= f�(1); �(m)g. Note that
R�(1) \ R&(1) =

��
�(1)&(1); �t((S + �(1)&(1))c

	
; �t(Sc)

	
. Since &(1) 6= �(m), �� =2

R�(1) \R&(1), which implies �� 2 �(Sc) nR&(1). Thus,

v�&(S) = max

�
max

�2�(Sc)nR&(1)
v(S;�); r&(1)

�
fv(S;�)g�2R&(1)

��

= max
�
v(S;��); r&(1)

�
fv(S;�)g�2R&(1)

�	
= v(S;��) (6)

Note that by our choice of v, v(S;��) = max�2�(Sc) v(S;�). This along with the fact

that ��2 �(Sc) n R&(1) ensures the second equality. The �nal equality follows from
(A1); because r&(1)

�
fv(S;�)g�2R&(1)

�
� max�2R&(1) v(S;�) � max�2�(Sc) v(S;�) =

v(S;��).
But by Path Independence, v��(S) = v�&(S). Hence, from (5) and (6), r�(1)

�
fv(S;�)g�2R�(1)

�
=

v(S;��).
Proof of Step 2:
Suppose v(S; �t(Sc)) = max�2R�(1) v(S;�). Without loss of generality, sup-

pose �� = f�(1)�(m); �t((S + �(1)�(m))c)g for some m 6= 1. That is, v(S;��) =
max�2Rin�t(Sc) v(S;�). Let v

0
be the same as v except for some j 6= 1;m

v�(S;�(1)�(j); �t((S + �(1)�(j))c)) < v(S;�(1)�(j); �t((S + �(1)�(j))c))

Notice that max�2Rin�t(Sc) v
�(S;�) = v�(S;��) = v(S;��). Let us choose v(S;�) =

v�(S;�) � v(S;��) for all � 2 �(Sc) nR�(1). Then by (A2), for all � 2 �(Sc) nR�(1);
we have r�(1)

�
fv(S;�)g�2R�(1)

�
� v(S;��) � v(S;�). By (4),

v��(S) = max

�
max

�2�(Sc)nR�(1)
v(S;�); r�(1)

�
fv(S;�)g�2R�(1)

��

= r�(1)
�
fv(S;�)g�2R�(1)

�
(7)

Let us hoose another permutations & such that &(1) = �(m) and &(l) = �(1).
Note that

R�(1) \R&(1) =
��

�(1)&(1); �t((S + �(1)&(1))c
	
; �t(Sc)

	
=

��
&(l)&(1); �t((S + &(l)&(1))c

	
; �t(Sc)

	
By our choice of v,

v(S; �t(Sc)) � v(S;�(1)�(m); �t((S + �(1)�(m))c)

= v(S; &(l)&(1); �t((S + &(l)&(1))c)

= max
�2�(Sc)in�t(Sc)

v(S;�)
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Using arguments similar to those in (7), we get

v�&(S) = max

�
max

�2�(Sc)nR&(1)
v(S;�); r&(1)

�
fv(S;�)g�2R&(1)

��

= r&(1)
�
fv(S;�)g�2R&(1)

�

By Path Independence, v��(S) = v�&(S). Hence, r�(1)
�
fv(S;�)g�2R�(1)

�
= r&(1)

�
fv(S;�)g�2R&(1)

�
.

Using the same arguments for v�, we get, r�(1)
�
fv�(S;�)g�2R�(1)

�
= r&(1)

�
fv�(S;�)g�2R&(1)

�
.

However, �(1)�(j); �t((S + �(1)�(j))c, which is the only partition of Sc for which
v(S;�) 6= v�(S; �), does not belong to R�(1) \ R&(1) and hence does not belong to
R&(1)2. Therefore, r&(1)

�
fv(S;�)g�2R&(1)

�
= r&(1)

�
fv�(S;�)g�2R&(1)

�
, which implies

r�(1)
�
fv(S;�)g�2R�(1)

�
= r�(1)

�
fv�(S;�)g�2R�(1)

�
.

Proof of Step 3:
Let v and v� be such that

v(S; �t(Sc)) = max
�2R�(1)

v(S;�), max
�2Rin�t(Sc)

v(S;�) = v(S;�(1)�(m); �t((S + �(1)�(m))c)

v�(S; �t(Sc)) = max
�2R�(1)

v�(S;�), max
�2Rin�t(Sc)

v�(S;�) = v�(S;�(1)�(l); �t((S + �(1)�(l))c)

v(S; �t(Sc)) = v�(S; �t(Sc)), max
�2Rin�t(Sc)

v(S;�) = max
�2Rin�t(Sc)

v�(S;�)

We will show that r�(1)
�
fv(S;�)g�2R�(1)

�
= r�(1)

�
fv�(S;�)g�2R�(1)

�
. For all � 2

�(Sc)nR�(1); we choose v(S;�) = v�(S;�) � max�2Rin�t(Sc) v(S;�) = max�2Rin�t(Sc) v
�(S;�).

By (7), v��(S) = r�(1)
�
fv(S;�)g�2R�(1)

�
. We choose another permutation & such

that &(1) = �(j), where j 6= 1;m; l.

v�&(S) = max

�
max

�2�(Sc)nR&(1)
v(S;�); r&(1)

�
fv(S;�)g�2R&(1)

��

= max
�
v(S;�(1)�(m); �t((S + �(1)�(m))c); r&(1)

�
fv(S;�)g�2R&(1)

�	

The second equality follows from the fact that f�(1)�(m); �t((S + �(1)�(m))cg =2
R&(1), because &(1) 6= �(m). Also by Path Independence, v��(S) = v�&(S), which
implies

r�(1)
�
fv(S;�)g�2R�(1)

�
= max

�
v(S;�(1)�(m); �t((S + �(1)�(m))c); r&(1)

�
fv(S;�)g�2R&(1)

�	

Similarly,

r�(1)

�
fv�(S;�)g�2R�(1)

�
= max

n
v�(S;�(1)�(l); �t((S + �(1)�(l))c); r&(1)

�
fv�(S;�)g�2R&(1)

�o

However, we have chosen v�(S;�) = v(S;�) for all � 2 �(Sc)nR�(1). Hence, v�(S;�) =
v(S;�) for all � 2 R&(1) n R�(1). Note that f�(1)�(j); �t((S + �(1)�(j))cg 2 R&(1) \
R�(1). We can also choose v�(S;�) = v(S;�) to be greater than v(S;�(1)�(j); �t((S+

2By de�nition, �(1)�(j); �t((S + �(1)�(j))c 2 R�(1)
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�(1)�(j))c) and v�(S;�(1)�(j); �t((S + �(1)�(j))c) for all � 2 R&(1) n R�(1). Thus
f�(1)�(j); �t((S + �(1)�(j))cg is not the second highest partition in R&(1) under
v and v�. By step 2, r&(1)

�
fv(S;�)g�2R&(1)

�
= r&(1)

�
fv�(S;�)g�2R&(1)

�
. We also

have, v(S;�(1)�(m); �t((S+�(1)�(m))c) = v�(S;�(1)�(l); �t((S+�(1)�(l))c). There-
fore, r�(1)

�
fv(S;�)g�2R�(1)

�
= r�(1)

�
fv�(S;�)g�2R�(1)

�
. Thus r�(1) is a function of

v(S; �t(Sc)) and max�2Rin�t(Sc) v(S;�). By Scale Invariance, r�(1) = �max�2Rin�t(Sc) v(S;�)+
(1� �)v(S;�t(Sc)) and by Monotonicity 0 � � � 1.

Proof of Step 4:
Suppose � > 0. Take T � N such that jT j = jSj�13. Consider rNi;T;�t((T+i)c) and

j =2 T . By Lemma 3, if v
�
T ;�t(T c)

�
= v

�
T ; ij; �t((T + ij)c)

�
then rNi;T;�t((T+i)c) =

rNi;T+j;�t((T+ij)c). In step 1 and 3, we have already identi�ed rNi;T+j;�t((T+ij)c) because

jT + jj = jSj.
Take a game v such that for some j =2 T , v

�
T ; ij; �t((T + ij)c)

�
> v

�
T ; ik; �t((T + il)c)

�
for all k =2 T [fi; jg and v

�
T ; ij; �t((T + ij)c)

�
> v

�
T ;�t(T c)

�
. Consider two games

v1 and v2 such that they are the same as v except

v1
�
T ;�t(T c)

�
= v1

�
T ; ij; �t((T + ij)c)

�
= v

�
T ; ij; �t((T + ij)c)

�
v2
�
T ;�t(T c)

�
= v2

�
T ; il; �t((T + il)c)

�
= v

�
T ; il; �t((T + il)c)

�

where l =2 T [ fi; jg. Note that v1 and v2 are the same except v1
�
T ;�t(T c)

�
>

v2
�
T ;�t(T c)

�
.

Since v1
�
T ;�t(T c)

�
= v1

�
T ; ij; �t((T + ij)c)

�
> v

�
T ; il; �t((T + il)c)

�
for all

l =2 T [ fjg; by step 3 and Lemma 3, ,

rNi;T;�t((T+i)c)

�
fv1(T ; ik; �

t((T + ik)c)gk2(T+i)c ; v1
�
T ;�t(T c)

��
= � max

k2T+ijc
v1(T ; ik; �

t(fT + ikgc)) + (1� �)v1(T ;�
t(T c))

= � max
k2T+ijc

v(T ; ik; �t(fT + ikgc)) + (1� �)v
�
T ; ij; �t((T + ij)c)

�

Since maxk2T+i v2(T ; ik; �
t(fT+ikgc)) = v2

�
T ; ij; �t((T + ij)c)

�
> v2

�
T ;�t(T c)

�
=

v2
�
T ; il; �t((T + il)c)

�
; by Step 1 and Lemma 3,

rNi;T;�t((T+i)c)

�
fv2(T ; ik; �

t((T + ik)c)gk2(T+i)c ; v2
�
T ;�t(T c)

��
= max

k2T+i
v2(T ; ik; �

t(fT + ikgc))

= v2(T ; ij; �
t(fT + ijgc))

= v(T ; ij; �t(fT + ijgc))

3Note that it is not possible if jSj = 1. In other words Step 4 is not applicable for rNi;fjg;�t(fi;jgc).
Thus,

r
N
i;fjg;�t(fi;jg)c) =

�
�maxk=2fi;jgc v(j; ik; �

t(fijkgc)) + (1� �)v(j;�t(fjgc)) if v(j;�t(Sc)) � maxk2fi;jgc v(j; ik; �
t(fijkgc))

maxk2fi;jgc v(j; ik; �
t(fijkgc)) Otherwise
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Since � > 0 and v
�
T ; ij; �t((T + ij)c)

�
> v

�
T ; il; �t((T + il)c)

�
for all l =2 T [ fjg,

we have

v(T ; ij; �t(fT+ijgc)) > � max
k2T+ijc

v(T ; ik; �t(fT+ikgc))+(1��)v
�
T ; ij; �t((T + ij)c)

�

Hence,

rNi;T;�t((T+i)c)

�
fv2(T ; ik; �

t((T + ik)c)gk2(T+i)c ; v2
�
T ;�t(T c)

��
> rNi;T;�t((T+i)c)

�
fv1(T ; ik; �

t((T + ik)c)gk2(T+i)c ; v1
�
T ;�t(T c)

��

But this violates Monotonicity because v1
�
T ;�t(T c)

�
> v2

�
T ;�t(T c)

�
. Therefore

� = 0:
This completes the proof. �
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