
Cahier 06-2013

House Allocation via Deferred-Acceptance

Lars EHLERS and 
Bettina KLAUS 



CIREQ, Université de Montréal 
C.P. 6128, succursale Centre-ville 
Montréal (Québec)  H3C 3J7 
Canada 
Téléphone : (514) 343-6557 
Télécopieur : (514) 343-7221  
cireq@umontreal.ca 
http://www.cireqmontreal.com

Le Centre interuniversitaire de recherche en économie quantitative (CIREQ) regroupe des chercheurs 
dans les domaines de l'économétrie, la théorie de la décision, la macroéconomie et les marchés financiers, 
la microéconomie appliquée et l’économie expérimentale ainsi que l'économie de l'environnement et des 
ressources naturelles. Ils proviennent principalement des universités de Montréal, McGill et Concordia. Le 
CIREQ offre un milieu dynamique de recherche en économie quantitative grâce au grand nombre d'activités 
qu'il organise (séminaires, ateliers, colloques) et de collaborateurs qu'il reçoit chaque année. 

The Center for Interuniversity Research in Quantitative Economics (CIREQ) regroups researchers in the 
fields of econometrics, decision theory, macroeconomics and financial markets, applied microeconomics and 
experimental economics, and environmental and natural resources economics. They come mainly from the 
Université de Montréal, McGill University and Concordia University. CIREQ offers a dynamic environment of 
research in quantitative economics thanks to the large number of activities that it organizes (seminars, 
workshops, conferences) and to the visitors it receives every year. 

Cahier 06-2013 

House Allocation via Deferred-Acceptance 

Lars EHLERS and Bettina KLAUS 



Ce cahier a également été publié par le Département de sciences économiques de 
l’Université de Montréal sous le numéro (2013-05). 

This working paper was also published by the Department of Economics of the 
University of Montreal under number (2013-05). 

Dépôt légal - Bibliothèque nationale du Canada, 2013, ISSN 0821-4441 
Dépôt légal - Bibliothèque et Archives nationales du Québec, 2013 

ISBN-13 : 978-2-89382-647-9 
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Lars Ehlers† Bettina Klaus‡
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Abstract

We study the simple model of assigning indivisible and heterogenous objects (e.g., houses, jobs,

offices, etc.) to agents. Each agent receives at most one object and monetary compensations

are not possible. For this model, known as the house allocation model, we characterize the class

of rules satisfying unavailable object invariance, individual rationality, weak non-wastefulness,

resource-monotonicity, truncation invariance, and strategy-proofness: any rule with these prop-

erties must allocate objects based on (implicitly induced) objects’ priorities over agents and the

agent-proposing deferred-acceptance-algorithm.

JEL Classification: D63, D70

Keywords: deferred-acceptance-algorithm, indivisible objects allocation, resource-monotonicity,

strategy-proofness.

1 Introduction

We study the simple model of assigning indivisible and heterogenous objects (e.g., houses, jobs,

offices, etc.) to agents. Agents have strict preferences over objects and remaining unassigned. An

assignment is an allocation of the objects to the agents such that every agent receives at most

one object. A rule associates an assignment to each preference profile. This problem is known as

the “house allocation problem” and the search for “good” rules to solve it has been the subject of

various contributions (Ehlers, 2002; Ehlers and Klaus, 2004, 2007, 2011; Kesten, 2009; Pápai, 2000).

As Ehlers and Klaus (2004, 2011) and Kesten (2009) we consider situations where resources may

change, i.e., it could be that additional objects are available. When the change of the environment

is exogenous, it would be unfair if the agents who were not responsible for this change were treated

∗This note contains the house allocation part of Ehlers and Klaus (2009). Lars Ehlers acknowledges financial
support from the SSHRC (Canada) and the FQRSC (Québec).
†Département de Sciences Économiques and CIREQ, Université de Montréal, Montréal, Québec H3C 3J7, Canada;

e-mail: lars.ehlers@umontreal.ca.
‡Corresponding author : Faculty of Business and Economics, University of Lausanne, Internef 538, CH-1015,

Lausanne, Switzerland.; e-mail: bettina.klaus@unil.ch.
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unequally. We apply this idea of solidarity and require that if additional resources become available,

then all agents (weakly) gain. This requirement is called resource-monotonicity (Chun and Thom-

son, 1988). Ehlers and Klaus (2004, 2011) and Kesten (2009) consider resource-monotonic rules

for house allocation and prove that resource-monotonicity together with efficiency and some other

properties characterizes the class of mixed-dictator-pairwise-exchange rules. Here, we only impose

the mild efficiency requirement of weak non-wastefulness1 as well as the very basic and intuitive

properties of individual rationality2 and unavailable object invariance.3 We also impose the in-

variance property truncation invariance.4 Our last property is the well-known strategic robustness

condition of strategy-proofness.5 We show that these elementary and intuitive properties character-

ize the class of so-called deferred-acceptance-rules, i.e., any rule with these properties must allocate

objects based on (implicitly induced) objects’ priorities over agents and the outcome of the agent-

proposing deferred-acceptance-algorithm. The class of deferred-acceptance-rules contains the class

of mixed-dictator-pairwise-exchange rules as characterized by Ehlers and Klaus (2004, 2011) and

Kesten (2009); in fact, our main result implies these previous characterizations (and strengthens

one of them).

Related papers are Kojima and Manea (2010) and Ehlers and Klaus (2012). They characterize

deferred-acceptance rules based on “responsive” priorities and “acceptant substitutable” priorities

for a more general model where several identical copies of an object may be available (whereas in

our house allocation model only one copy of each object is available). Example 1 shows that our

characterization only holds for house allocation but not for the more general model considered by

Kojima and Manea (2010) and Ehlers and Klaus (2012). Note that in all these contributions prior-

ities are derived from a rule via a set of properties. Other papers take exogenous priorities as given

and impose properties on the rule using these exogenous priorities. Balinski and Sönmez (1999)

and Morrill (2013) then characterize the deferred-acceptance rules based on “responsive” priorities

and “substitutable” priorities.

The paper is organized as follows. In Section 2 we introduce the house allocation model,

properties of rules, and the class of deferred-acceptance-rules. In Section 3 we state our charac-

terization of the class of deferred-acceptance-rules (Theorem 1) and derive (strengthen) previous

characterizations of Ehlers and Klaus (2004, 2011) and Kesten (2009) (Corollary 1). Proofs and

the independence of properties in Theorem 1 can be found in the Appendix.

1No agent who does not receive any real object (but the so-called null object) would prefer to obtain a real object
that is not assigned.

2Each agent weakly prefers his allotment to not receiving any object (or to receiving the so-called null object).
3The rule only depends on the set of available object types.
4“Truncating preferences” by moving the null object below the assigned object does not change the allocation.
5No agent can manipulate the allocation to his advantage by lying about his preferences.
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2 House Allocation

2.1 The Model and Notation

Our house allocation model is identical to that described in Ehlers and Klaus (2004, 2011).

Let N denote a finite set of agents, |N | ≥ 2. Let K denote a set of potential real objects (or

real houses). Not receiving any real object is called “receiving the null object.” Let 0 represent the

null object. Each agent i ∈ N is equipped with a preference relation Ri over all objects K ∪ {0}.
Given x, y ∈ K ∪ {0}, x Ri y means that agent i weakly prefers x to y, and x Pi y means that

agent i strictly prefers x to y. We assume that Ri is strict, i.e., Ri is a linear order over K ∪ {0}.
Let R denote the class of all linear orders over K ∪ {0}, and RN the set of (preference) profiles

R = (Ri)i∈N such that for all i ∈ N , Ri ∈ R. Given i ∈ N and Ri ∈ R, object x ∈ K is acceptable

under Ri if x Pi 0. Let A(Ri) = {x ∈ K : x Pi 0} denote the set of acceptable objects under Ri.

Given K ′ ⊆ K ∪ {0}, let Ri|K′ denote the restriction of Ri to K ′ and R|K′ = (Ri|K′)i∈N . Given

R ∈ RN and M ⊆ N , let RM denote the profile (Ri)i∈M . It is the restriction of R to the set of

agents M . We also use the notation R−M = RN\M and R−i = RN\{i}.

An allocation is a list a = (ai)i∈N such that for all i ∈ N , ai ∈ K ∪ {0} and none of the real

objects in K is assigned to more than one agent. Note that 0, the null object, can be assigned to

any number of agents and that not all real objects have to be assigned. Let A denote the set of all

allocations. Let H denote the set of all non-empty subsets H of K. A (house allocation) problem

consists of a preference profile R ∈ RN and a set of real objects H ∈ H. Note that the associated

set of available objects H ∪ {0} always includes the null object. An (allocation) rule is a function

ϕ : RN ×H → A such that for all problems (R,H) ∈ RN ×H, ϕ(R,H) ∈ A is feasible, i.e., for all

i ∈ N , ϕi(R,H) ∈ H ∪ {0}. By feasibility, each agent receives an available object. Given i ∈ N ,

we call ϕi(R,H) the allotment of agent i at ϕ(R,H).

2.2 Properties of Rules

A natural requirement for a rule is that the chosen allocation depends only on preferences over the

set of available objects.

Unavailable Object Invariance:6 For all (R,H) ∈ RN×H and all R′ ∈ RN such that R|H∪{0} =

R′|H∪{0}, ϕ(R,H) = ϕ(R′, H).

By individual rationality each agent should weakly prefer his allotment to the null object.

Individual Rationality: For all (R,H) ∈ RN ×H and all i ∈ N , ϕi(R,H)Ri 0.

Next, we introduce two properties that require a rule to not waste any resources. First, non-

wastefulness (Balinski and Sönmez, 1999) requires that no agent prefers an available real object

that is not assigned to his allotment. Non-wastefulness is a weak efficiency requirement.

6In Ehlers and Klaus (2004, 2011) we call this property independence of irrelevant objects.
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Non-Wastefulness: For all (R,H) ∈ RN × H, all x ∈ H, and all i ∈ N , if x Pi ϕi(R,H), then

there exists j ∈ N such that ϕj(R,H) = x.

Next, we weaken non-wastefulness by requiring that no agent receives the null object while he

prefers an available real object that is not assigned.

Weak Non-Wastefulness: For all (R,H) ∈ RN ×H, all x ∈ H, and all i ∈ N , if x Pi ϕi(R,H)

and ϕi(R,H) = 0, then there exists j ∈ N such that ϕj(R,H) = x.

Weak non-wastefulness is a limited efficiency requirement that only applies to agents who receive

the null object.

Of course, no resources are wasted if a rule is (Pareto) efficient.

Efficiency: For all (R,H) ∈ RN × H, there exists no feasible allocation a ∈ A such that for all

i ∈ N , ai Ri ϕi(R,H), and for some j ∈ N , aj Pj ϕj(R,H).

Note that efficiency implies individual rationality and (weak) non-wastefulness.

When the set of objects varies, another natural requirement is resource-monotonicity. As al-

ready explained in the Introduction, this is a widely used solidarity property introduced by Chun

and Thomson (1988) and it describes the effect of a change in the available resources on the welfare

of the agents. A rule is resource-monotonic if the availability of more real objects has a (weakly)

positive effect on all agents.

Resource-Monotonicity: For all R ∈ RN and all H,H ′ ∈ H, if H ⊆ H ′, then for all i ∈ N ,

ϕi(R,H
′)Ri ϕi(R,H).

Many rules that are used in real life ignore agents’ preferences below their allotments (e.g., any

rule based on or equivalent to the famous deferred-acceptance-algorithm or the so-called priority

rules, Roth and Sotomayor, 1990, Sections 5.4.1 and 5.5.1). That is, an allocation does not change

if an agents changes his reported preferences below his allotment. We formulate a weaker version

of this invariance property by restricting agents’ changes below their allotments to truncations.

Let i ∈ N and Ri ∈ R. Then, a truncation of a preference relation Ri is a preference relation

R̄i that ranks the real objects in the same way as the corresponding original preference relation

and each real object which is acceptable under the truncation is also acceptable under the original

preference relation. Formally, preference relation R̄i ∈ R is a truncation of Ri if (a) R̄i|K = Ri|K
and (b) A(R̄i) ⊆ A(Ri). Loosely speaking, a truncation strategy of Ri is obtained by moving the

null object “up.”

If an agent truncates his preference relation in a way such that his allotment remains acceptable

under the truncated preference relation, then truncation invariance requires that the allocation is

the same under both profiles. The property is quite natural on its own in the sense that the chosen
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allocations do not depend on where any agent, who receives an individually rational real object,

ranks the null object below his allotment.

Truncation Invariance: For all (R,H) ∈ RN × H, all i ∈ N , and all R̄i ∈ Ri, if R̄i

is a truncation of Ri and ϕi(R,H) is acceptable under R̄i (i.e., ϕi(R,H) ∈ A(R̄i)), then

ϕ((R̄i, R−i), H) = ϕ(R,H).

The well-known non-manipulability property strategy-proofness requires that no agent can ever

benefit from misrepresenting his preferences.

Strategy-Proofness: For all (R,H) ∈ RN × H, all i ∈ N , and all R̄i ∈ R, ϕi(R,H) Ri

ϕi((R̄i, R−i), H).

The following strengthening of strategy-proofness requires that no group of agents can ever

benefit by misrepresenting their preferences.

Group Strategy-Proofness: For all (R,H) ∈ RN ×H, all M ⊆ N , and all R̄M ∈ RM , if for all

i ∈M , ϕi((R̄M , R−M ), H)Ri ϕi(R,H), then for all i ∈M , ϕi((R̄M , R−M ), H) = ϕi(R,H).

2.3 Priority Structures, Marriage Markets, and Stability

Given object x ∈ K, let �x denote a priority ordering on N , e.g., �x: 1 2 . . . n means that agent

1 has higher priority for object x than agent 2, who has higher priority for object x than agent

3, etc. Let �≡ (�x)x∈K denote a priority structure. Then, given a priority structure � and a

problem (R,H), we can interpret (R, (H,�)) as a marriage market (Gale and Shapley, 1962; Roth

and Sotomayor, 1990) where the set of agents N , for instance, corresponds to the set of women,

the set of objects H corresponds to the set of available men, preferences R|H∪{0} correspond to

women’s preferences over available men, and the priority structure (�x)x∈H corresponds to the

available men’s preferences over women. Stability is an important requirement for many real-life

matching markets and it will turn out to be essential in our context of allocating indivisible objects

to agents as well.

Stability under �: Given (R,H) ∈ RN ×H, a feasible allocation a ∈ A is stable under � if there

exists no agent-object pair (i, x) ∈ N ×H ∪ {0} such that (a) x Pi ai and (b) either [x = 0] or [for

all j ∈ N , aj 6= x] or [there exists k ∈ N such that ak = x and i �x k].

Furthermore, rule ϕ is stable if there exists a priority structure � such that for each problem

(R,H) ∈ RN ×H, ϕ(R,H) is stable under �.

Note that stability implies individual rationality and (weak) non wastefulness, but it does not

imply efficiency.

For any marriage market (R, (H,�)), we denote by DA�(R,H) the agent-optimal stable allo-

cation that is obtained by using Gale and Shapley’s (1962) agent-proposing deferred-acceptance-

algorithm: let (R, (H,�)) be given. Then,
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• at the first step of the deferred-acceptance-algorithm, every agent applies to his favorite

available object in H ∪ {0}. For each available real object x ∈ H, the applicant who has the

highest priority for x is placed on the waiting list of x, and all others are rejected. The null

object 0 accepts all agents.

• At the r-th step of the deferred-acceptance-algorithm, those applicants who were rejected at

step r− 1 apply to their next best available object in H ∪ {0}. For each available real object

x ∈ H, the applicant among the new applicants and the one on the waiting list who has the

highest priority for x is placed on the (updated) waiting list of x, and all others are rejected.

The null object 0 accepts all agents.

The deferred-acceptance-algorithm terminates when every agent is on a waiting list.7 Once the

algorithm ends, available real objects are assigned to the agents on the waiting lists (all other

agents were accepted by and receive the null object) and the resulting allocation is the agent-

optimal stable allocation for the marriage problem (R, (H,�)), denoted by DA�(R,H).

Deferred-Acceptance-Rules: A rule ϕ is a deferred-acceptance-rule if there exists a priority

structure � such that for each (R,H) ∈ RN ×H, ϕ(R,H) = DA�(R,H).

3 Characterizations of Deferred Acceptance

We first present our main characterization.

Theorem 1. Deferred-acceptance-rules are the only rules satisfying unavailable object invariance,

individual rationality, weak non-wastefulness, resource-monotonicity, truncation invariance, and

strategy-proofness.

The proof of Theorem 1 in Section A.1 reveals the following additional result, which is based

on the same properties as used in Theorem 1 except for strategy-proofness.

Proposition 1. If a rule satisfies unavailable object invariance, individual rationality, weak non-

wastefulness, resource-monotonicity, and truncation invariance, then it is stable.

Next, we show how Theorem 1 implies a previous characterization result (Ehlers and

Klaus, 2011, Theorem 2) and strengthens another one (Ehlers and Klaus, 2011, Corollary 1; Kesten ,

2009, Theorem 1). To this end we introduce an acyclicity condition which can be derived by ap-

plying Ergin’s (2002) acyclicity condition to house allocation problems.

Cycles and Acyclicity: Given a priority structure � a cycle consists of distinct x, y ∈ K and

i, j, k ∈ N such that i �x j �x k and k �y i. A priority structure � is acyclic if it has no cycles.

7Note that the null object has unlimited capacity and eventually any agent is put on the waiting list of either a
real object or accepted by the null object.
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A deferred-acceptance-rule is acyclic if the associated priority structure is acyclic.

Ergin (2002, Theorem 1) shows that the acyclicity of the priority structure � is equivalent to

efficiency or group strategy-proofness of the induced deferred-acceptance-rule DA�. Furthermore,

with Kesten’s (2009, Theorem 1) result it follows that for house allocation the class of efficient

deferred-acceptance-rules equals the class of mixed-dictator-pairwise-exchange-rules characterized

in Ehlers and Klaus (2004, 2011). Then, Theorem 1 implies the following characterizations of the

subclass of acyclic deferred-acceptance-rules.

Corollary 1.

(a) Deferred-acceptance-rules with acyclic priority structures are the only rules satisfying unavail-

able object invariance, efficiency, resource-monotonicity, and truncation invariance;

(b) Deferred-acceptance-rules with acyclic priority structures are the only rules satisfying individual

rationality, weak non-wastefulness, resource-monotonicity, and group strategy-proofness.

Corollary 1(a) equals Ehlers and Klaus’s (2011) Theorem 2 (a correction of Ehlers and

Klaus, 2004, Theorem 1). Corollary 1(b) strengthens Ehlers and Klaus’s (2004) Corollary 1 and

Kesten’s (2009) Theorem 1 by replacing efficiency by the weaker properties individual rationality

and weak non-wastefulness.

The following example demonstrates that Theorem 1 and Proposition 1 do not hold for the

more general model where more than one copy of each object might be available.

Example 1. Let N = {1, 2, 3}, K = {x, y}, and there are two copies of x and one copy of y

available. We then denote a problem by (R, q), where q = (qx, qy) denotes the availability of

objects x and y, e.g., q = (2, 0) denotes that two copies of x and no copy of y are available. Let

O+(q) = {x ∈ K : qx > 0} denote the set of available real objects under q. All properties are easily

adapted to this more general allocation situation.

The following rule f satisfies unavailable object invariance, individual rationality, weak non-

wastefulness, resource-monotonicity, truncation invariance, and strategy-proofness.

Let �x: 1 2 3, �′x: 1 3 2, and �y: 1 2 3. Let �= (�x,�y) and �′= (�′x,�y). Then, for each

problem (R, q),

f(R, q) =

{
DA�

′
(R, q) if qx = 2 and x is agent 1’s favorite object in O+(q) and

DA�(R, q) otherwise.

Note that f is not stable (and therefore, f is not a deferred-acceptance-rule): suppose that f is

stable with respect to �̂; if qx = 2 and each agent’s favorite object is x, then agents 1 and 3 receive

x and agent 2 receives 0 (not the desired x), implying 3 �̂x2; if qx = 1, agent 2’s and agent 3’s

favorite object is x, and agent 1’s favorite object is 0, then agent 2 receives x and agent 3 receive

0 (not the desired x), implying 2 �̂x3; a contradiction.
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It is easy to see that f satisfies unavailable object invariance, individual rationality, weak non-

wastefulness, truncation invariance, and strategy-proofness.

For resource-monotonicity, let R ∈ RN and q, q′ be such that for all z ∈ K, qz ≤ q′z. It suffices

to check for possible violations of resource-monotonicity when f uses a different priority structure

for (R, q) and (R, q′). Hence, q′x = 2.

If qx = 2, then q′y = 1, qy = 0, x is agent 1’s favorite object in O+(q), and y is agent 1’s

favorite object in O+(q′) (otherwise the priority structure for (R, q) and (R, q′) would not change).

Furthermore, � is used for problem (R, q) and �′ is used for problem (R, q′). Then, f1(R, q) = x

and f1(R, q
′) = y. But now two copies of object x are available for agents 2 and 3 for problem

(R, q′) and resource-monotonicity is satisfied.

Otherwise, qx < 2 and x must be agent 1’s favorite object in O+(q′) (otherwise the priority

structure for (R, q) and (R, q′) would not change).

If qx = 0, then the only violation of resource-monotonicity could be that an agent receives y

at f(R, q) and 0 at f(R, q′). However, since object y is allocated according to the same priority

ordering under � and �′, this cannot happen.

If qx = 1, then f1(R, q) = x and none of the agents 2 or 3 can obtain x. Hence, in terms of

allocating object x is does not matter if priority ordering �x or �′x is used; it is as if �′ is used for

both problems and no violation of resource-monotonicity occurs. �
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A Appendix

A.1 Proof of Proposition 1 and Theorem 1

First, note that all deferred-acceptance rules are stable and that stability implies individual ratio-

nality and weak non-wastefulness. Furthermore, it is easy to check that all deferred-acceptance

rules satisfy unavailable object invariance and truncation invariance. Dubins and Freedman (1981)

and Roth (1982) proved strategy-proofness of all deferred-acceptance-rules. Crawford (1991) stud-

ied comparative statics of deferred-acceptance-rules. From his results it follows that all deferred-

acceptance-rules are resource-monotonic.

Second, let ϕ be a rule satisfying the properties of Theorem 1. First, we “calibrate/construct

the priority structure using maximal conflict preference profiles.”

We denote a preference relation with only one acceptable object x ∈ K by Rx, i.e., A(Rx) = {x}.
We denote the set of all preference relations that have x ∈ K as the unique acceptable object by

Rx. Let R0 ∈ R be such that A(R0) = 0.

For any S ⊆ N , let RxS = (Rxi )i∈S such that for all i ∈ S, Rxi = Rx, and similarly R0
S = (R0

i )i∈S

such that for all i ∈ S, R0
i = R0.
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Consider the problem (RxN , {x}). By weak non-wastefulness, for some j ∈ N , ϕj(R
x
N , {x}) = x,

say j = 1. Then, for all i ∈ N \ {1}, we set 1 �x i.
Next consider the problem ((R0

1, R
x
−1), {x}). By weak non-wastefulness and individual rational-

ity, for some j ∈ N \ {1}, ϕj((R0
1, R

x
−1), {x}) = x, say j = 2. Then, for all i ∈ N \ {1, 2}, we set

2 �x i.
By induction, we obtain �x for any object x and thus a priority structure �= (�x)x∈K .

Lemma 1. For all R ∈ RN and all x ∈ K, if for some j ∈ N , ϕj(R, {x}) = x, then for all

i ∈ N \ {j}, x ∈ A(Ri) implies j �x i.

Proof. Let R ∈ RN and x ∈ K. Without loss of generality, suppose 1 �x 2 �x · · · �x n. Let

S = {i ∈ N : x ∈ A(Ri)} and let j = minS. We prove Lemma 1 by showing that ϕj(R, {x}) = x.

Note that for all i ∈ N\S, 0Pix. We partition the set N\S into the “lower” set L = {1, . . . , j−1}
(possibly L = ∅) and the “upper” set U = N \ (L ∪ S) (possibly U = ∅). Note that by unavailable

object invariance, ϕ(R, {x}) = ϕ((R0
L, R

x
S , R

0
U ), {x}).

By the construction of �x, ϕj((R
0
L, R

x
S∪U ), {x}) = x. Hence, if U = 0, then ϕj(R, {x}) = x and

for all i ∈ N , x ∈ A(Ri) implies j �x i.

Step 1 : Let k ∈ U . We prove that ϕj((R
0
L, R

x
S∪(U\{k}), R

0
k), {x}) = ϕj((R

0
L, R

x
S∪U ), {x}) = x.

Let y ∈ K \ {x} and R′k ∈ R be such that R′k : y x 0 . . .. By unavailable object invari-

ance, ϕj((R
0
L, R

x
S∪(U\{k}), R

′
k), {x}) = ϕj((R

0
L, R

x
S∪U ), {x}) = x. Now by resource-monotonicity,

ϕj((R
0
L, R

x
S∪(U\{k}), R

′
k), {x, y}) = x. By weak non-wastefulness and individual rationality,

ϕk((R
0
L, R

x
S∪(U\{k}), R

′
k), {x, y}) = y.

On the other hand, suppose that ϕj((R
0
L, R

x
S∪(U\{k}), R

0
k), {x}) 6= x. Then, by individual ratio-

nality, ϕk((R
0
L, R

x
S∪(U\{k}), R

0
k), {x}) 6= x. LetR′′k ∈ R be such thatR′′k : y 0 x . . . andR′′k|K = R′k|K .

By unavailable object invariance, ϕ((R0
L, R

x
S∪(U\{k}), R

′′
k), {x}) = ϕ((R0

L, R
x
S∪(U\{k}), R

0
k), {x}).

Thus, by weak non-wastefulness and individual rationality, for some l ∈ S ∪ (U \ {j, k}),
ϕl((R

0
L, R

x
S∪(U\{j}), R

′′
k), {x}) = x.

Now by resource-monotonicity, ϕl((R
0
L, R

x
S∪(U\{k}), R

′′
k), {x, y}) = x. By weak non-wastefulness

and individual rationality, ϕk((R
0
L, R

x
S∪(U\{k}), R

′′
k), {x, y}) = y. Now R′′k is a truncation of R′k and

both y ∈ A(R′′k) and ϕk((R
0
L, R

x
S∪(U\{k}), R

′
k), {x, y}) = y. Since ϕj((R

0
L, R

x
S∪(U\{k}), R

′′
k), {x, y}) 6=

ϕj((R
0
L, R

x
S∪(U\{k}), R

′
k), {x, y}) (because j 6= l), this is a contradiction to truncation invariance.

Hence, ϕj((R
0
L, R

x
S∪(U\{k}), R

0
k), {x}) = x.

Steps 2, . . . : Let U = {k1, . . . , kl}. Then using the same arguments as above, it follows that x =

ϕj((R
0
L, R

x
S∪U ), {x}) = ϕj((R

0
L, R

x
S∪(U\{k1}), R

0
k1

), {x}) = ϕj((R
0
L, R

x
S∪(U\{k1,k2}), R

0
{k1,k2}), {x}) =

. . . = ϕj((R
0
L, R

x
S∪{kl}, R

0
U\{kl}), {x}) = ϕj((R

0
L, R

x
S , R

0
U ), {x}) = ϕj(R, {x}). Hence, we obtain the

desired result that ϕj(R, {x}) = x.

With the following lemma (note that so far we have not used strategy-proofness), Proposition 1

follows.
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Lemma 2. For all (R,H) ∈ RN ×H, ϕ(R,H) is stable under �.

Proof. Let (R,H) ∈ RN × H. Assume that ϕ(R,H) is not stable under �. Then, there exists

an agent-object pair (i, x) ∈ N × (H ∪ {0}) such that (a) x Pi ϕi(R,H) and (b) either [x = 0] or

[for all j ∈ N , ϕj(R,H) 6= x] or [there exists k ∈ N such that ϕk(R,H) = x and i �x k]. By

individual rationality, x 6= 0. Hence, [for all j ∈ N , ϕj(R,H) 6= x] or [there exists k ∈ N such that

ϕk(R,H) = x and i �x k].

Let R̄ ∈ RN be such that (i) for all j ∈ N such that ϕj(R,H) 6= 0, R̄j is a truncation of Rj

such that there exists no y ∈ K \ {ϕj(R,H)} with ϕj(R,H) R̄j y R̄j 0 and (ii) for all j ∈ N such

that ϕj(R,H) = 0, R̄j = Rj . (By individual rationality, R̄j in (i) is well-defined as truncation of

Rj .) By truncation invariance, ϕ(R̄,H) = ϕ(R,H) and (i, x) ∈ N ×H is such that x P̄i ϕi(R̄,H)

and [for all j ∈ N , ϕj(R̄,H) 6= x] or [there exists k ∈ N such that ϕk(R̄,H) = x and i �x k].

Let S = {j ∈ N : x P̄j ϕj(R̄,H)}. Note that i ∈ S.

If for j ∈ S, ϕj(R̄, {x}) = x, then by resource-monotonicity, ϕj(R̄,H) R̄j x, contradicting

x P̄j ϕj(R̄,H). Hence, for all j ∈ S, ϕj(R̄, {x}) = 0. If S = {j ∈ N : x P̄j 0}, then this contradicts

weak non-wastefulness. Thus, S ( {j ∈ N : x P̄j 0}.

By construction of R̄, for all j ∈ N we have either (i) x P̄j ϕj(R̄,H) (and j ∈ S) or (ii)

ϕj(R̄,H) = x or (iii) 0 P̄j x. Thus, there exists k ∈ N\S such that S ∪ {k} = {j ∈ N : x P̄j 0} and

ϕk(R̄,H) = x. But then for (R̄,H) we have neither [x = 0] nor [for all j ∈ N , ϕj(R̄,H) 6= x] and

it holds ϕk(R̄,H) = x and i �x k.

Hence, by the fact that for all j ∈ S, ϕj(R̄, {x}) = 0, weak non-wastefulness and resource-

monotonicity, it follows that ϕk(R̄, {x}) = x. By Lemma 1, k �x i. However, at the same time

i �x k; a contradiction.

So far we have established that for any rule ϕ that satisfies the properties of Theorem 1, there

exists a priority ordering � such that for any (R,H) ∈ RN ×H, ϕ(R,H) is stable under �. Hence,

in the terminology of two-sided matching, the rule ϕ picks a stable matching for the marriage

market where objects have preferences over agents who consume the objects based on the priority

structure � and agents have strict preferences over objects based on preferences R (see Roth and

Sotomayor, 1990, Chapter 5). For these markets it is well-known that the deferred-acceptance-

rule is the only strategy-proof stable matching rule. Hence, Theorem 1 follows immediately from

Proposition 1.

A.2 Proof of Corollary 1

Proof. Deferred-acceptance rules (in particular those with acyclic priority structures) satisfy all the

properties listed in the corollary.
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(a) Let ϕ be a rule satisfying unavailable object invariance, efficiency, resource-monotonicity, and

truncation invariance. Since efficiency implies individual rationality and weak non-wastefulness, by

Proposition 1, there exists a priority structure � such that ϕ is stable under �. Since the deferred-

acceptance-rule Pareto dominates any other stable rule (Balinski and Sönmez, 1999, Theorem 2),

efficiency implies that ϕ = DA�. Finally, by efficiency and Ergin (2002, Theorem 1), � must be

acyclic.

(b) Let ϕ be a rule satisfying individual rationality, weak non-wastefulness, resource-monotonicity,

and group strategy-proofness. By Ehlers and Klaus (2004, Lemma 1), group strategy-proofness

implies unavailable object invariance. Furthermore, group strategy-proofness implies truncation

invariance and strategy-proofness. Hence, by Theorem 1, there exists a priority structure � such

that ϕ = DA�. Finally, by group strategy-proofness and Ergin (2002, Theorem 1), � must be

acyclic.

A.3 Independence of Properties in Theorem 1

For any strict order π of agents in N , we denote the corresponding serial dictatorship rule by fπ;

for example, if π : 1 2 . . . (n−1) n, then fπ works as follows: for each problem (R,H), first agent 1

chooses his preferred object in H, then agent 2 chooses his preferred object from the remaining

objects H \ {fπ1 (R,H)}, etc. Note that for each strict order π of N , fπ = DA�
π

where �π equals

the priority order such that for all x ∈ K, �πx= π. Thus, each serial dictatorship rule fπ satisfies

unavailable object invariance, individual rationality, weak non-wastefulness, resource-monotonicity,

truncation invariance, and strategy-proofness.

The following examples establish the independence of the properties (properties not mentioned

in the examples follow easily) in Theorem 1.

Not unavailable object invariant: Let n ≥ 3 and π : 1 2 3 . . . (n − 1) n and π′ : 1 n (n −
1) . . . 3 2. Then, for each problem (R,H) ∈ RN ×H,

ϕ(R,H) =

{
fπ(R,H) if A(R1) = ∅ and

fπ
′
(R,H) otherwise.

Not individually rational: Let π : 1 2 . . . (n − 1) n. For each Rn ∈ R, let R̂n be such that

A(R̂n) = K and R̂n|K = Rn|K. Then, for each problem (R,H) ∈ RN ×H,

ϕ(R,H) = fπ((R−n, R̂n), H).

Not weakly non-wasteful: Fix an object y ∈ K and π : 1 2 . . . (n − 1) n. Then, for each

problem (R,H) ∈ RN ×H,
ϕ(R,H) = fπ(R,H \ {y}).
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Not resource-monotonic: Let π and π′ be two distinct strict orders of agents in N . Then, for

each problem (R,H) ∈ RN ×H,

ϕ(R,H) =

{
fπ(R,H) if H = K and

fπ
′
(R,H) otherwise.

Not strategy-proof : Let � be a priority structure. Then, the deferred-acceptance-rule based on

the object-optimal allocation that is obtained by using Gale and Shapley’s (1962) object-proposing

deferred-acceptance-algorithm satisfies all properties except strategy-proofness.8

Not truncation invariant: Let N = {1, 2, 3}, K = {x, y}, �x: 3 1 2, �′x: 3 2 1, and �y: 3 1 2.

Let �= (�x,�y) and �′= (�′x,�y). Then, for each problem (R,H) ∈ RN ×H,

ϕ(R,H) =

{
DA�(R,H) if 0 P3 x and x ∈ H and

DA�
′
(R,H) otherwise.

Let R1 : x 0 y, R2 : x 0 y, R3 : y 0 x, and R′3 : y x 0. Let R = (R1, R2, R3) and R′ =

(R1, R2, R
′
3). Note that R3 is a truncation of R′3 and ϕ3(R, {x, y}) = y = ϕ3(R

′, {x, y}). However,

ϕ1(R, {x, y}) = x and ϕ2(R
′, {x, y}) = x; a contradiction of truncation invariance. Next, we show

strategy-proofness and resource-monotonicity for this rule.

For strategy-proofness, note that agents 1 and 2 cannot change the priority structure by re-

porting a false preference relation. Agent 3 always receives his most preferred object in H for

any problem (R,H). Thus, agent 3 cannot profitably manipulate by reporting a false preference

relation.

For resource-monotonicity, let |H| = 1 and R ∈ RN . If there is a violation of resource-

monotonicity, then ϕ must use different priority structures for (R,H) and (R, {x, y}). But then we

must have H = {y} and both ϕ(R, y) = DA�
′
(R, y) and ϕ(R, {x, y}) = DA�(R, {x, y}).

If yP30, then ϕ3(R, y) = y and ϕ1(R, y) = ϕ2(R, y) = 0, and all agents weakly prefer ϕ(R, {x, y})
to ϕ(R, y).

If 0 P3 y, then ϕ3(R, y) = 0. Since ϕ(R, {x, y}) = DA�(R, {x, y}), we have 0 P3 x and by

individual rationality, ϕ3(R, {x, y}) = 0. Note that 1 �x 2, 1 �y 2, and 1 �′y 2 (the latter

because �y=�′y). Let π : 1 2 3. Then, ϕ(R, y) = DA�
′
(R, y) = fπ(R, y) and ϕ(R, {x, y}) =

DA�(R, {x, y}) = fπ(R, {x, y}). Hence, resource-monotonicity is satisfied.

8Given �, there exist many “artificial” stable rules satisfying all properties except strategy-proofness. For instance,
let v ∈ {1, . . . , |K| − 1}. For all (R,H) ∈ RN × H, let the rule φ choose the object-optimal stable allocation (for
�) if |H| ≤ v and the agent-optimal stable allocation (for �) if |H| > v. The rule φ satisfies all properties except
strategy-proofness.
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